FLORA AND FAUNA ASSESSMENT FOR THE COMMERCIAL ROAD REZONING, ROUSE HILL

Flora and Fauna Assessment

For:

ROUSE HILL COMMERCIAL ROAD DEVELOPMENT CO PTY LTD

November 2008

Final Report

Cumberland Ecology PO Box 2474, Carlingford Court 2118

Report No. 8109RP1

The preparation of this report has been in accordance with the brief provided by the Client and has relied upon the data and results collected at or under the times and conditions specified in the report. All findings, conclusions or recommendations contained within the report are based only on the aforementioned circumstances. The report has been prepared for use by the Client and no responsibility for its use by other parties is accepted by Cumberland Ecology

i

Approved by:

David Robertson

Position:

Project Director

Dane Robertson

Signed:

Date:

27 November, 2008

Table Of Contents

EXECUTIVE SUMMARY

1.	INTRO	ODUCTION	
	1.1	Purpose	1.1
	1.2	Background	1.1
2.	Метн	HODS	
	2.1	Database Analysis	2.1
	2.2	Flora Survey	2.1
	2.3	Fauna Survey and Habitat Assessment	2.2
3.	Resu	JLTS	
	3.1	Flora Survey	3.1
		3.1.1 General	3.1
		3.1.2 Vegetation Communities	3.4
	3.2	Fauna Survey and Habitat Assessment	3.5
		3.2.1 Amphibians	3.5
		3.2.2 Reptiles	3.5
		3.2.3 Birds	3.5
		3.2.4 Mammals	3.6
		3.2.5 Wildlife Corridors	3.7
4.	Імрас	CT ASSESSMENT	
	4.1	Impact of Development	4.1
	4.2	Vegetation Communities	4.1
	4.3	Threatened Flora Species	4.2
	4.4	Threatened Fauna Species	4.2

i

Table Of Contents

5. CONCLUSION

Table Of Appendices

- Α. **FLORA SURVEY RESULTS**
- Β. **FAUNA SPECIES LIST**
- C. **ASSESSMENTS OF SIGNIFICANCE**

List of Figures

1.1	LOCATION OF THE SUBJECT SITE	1.2
3.1	VEGETATION ON THE SUBJECT SITE	3.8

List of Tables

3.1 THREATENED FAUNA RECORDED IN THE BAULKHAM HILLS LGA 3.9

List of Tables

A.1	PLANT SPECIES INDENTIFIED IN THE FLORA SURVEY	A.1
B.1	FAUNA SPECIES LIST FROM THE DEC ATLAS OF NSW WILDLIFE; SEARCHED WITHIN BAULKHAM HILLS LGA	B.1

List of Photographs

3.1	EXOTIC-DOMINATED GRASSLAND ON THE SUBJECT SITE	3.2
3.2	LANDSCAPED VEGETATION WITHIN CARPARK	3.3
3.3	DRAINAGE LINE DOMINATED BY EXOTIC VEGETATION	3.3
3.4	NATIVE-DOMINATED GRASSLAND	3.4
3.5	REMNANT WOODLAND TREES AND DEGRADED UNDERSTOREY	3.5

iii

Executive Summary

INTRODUCTION

The purpose of this report is to assess the flora and fauna values of the Commercial Road, Rouse Hill property under the *Environmental Planning and Assessment Act 1979* and predict impacts of the proposed retail rezoning on the flora and fauna of the subject site.

The vegetation on the subject site consists of grasslands, partially inundated drainage lines, landscaped areas and a patch of remnant woodland trees. Most of the vegetation is dominated by exotic species, or remains in a degraded state.

METHODS

Surveys of the subject site were carried out for flora (23rd October 2008) and fauna (15th October, 2008). The fauna survey included assessment of potential habitat, e.g. hollow-bearing trees, for threatened species which may use the site.

Background research was also conducted, including consultation of the Atlas of NSW Wildlife, to determine Endangered Ecological Communities and threatened species likely to occur in the study area.

RESULTS

The majority of the vegetation of the study area consists of exotic grassland with associated exotic herbaceous species. Native-dominated grassland exists in areas of the site. Two drainage lines run through the subject site, which are heavily over-grown with weeds and aquatic species.

An area of remnant woodland trees exists on site. This area would have historically represented River-flat Eucalypt Forest, an endangered ecological community. The understorey of this area is highly degraded due to weed invasion and heavy grazing. As such, this area was determined to not constitute River-flat Eucalypt Forest.

No threatened flora or fauna species were found in the survey. Areas partially inundated with water, the drainage lines and small dam may provide marginal habitat for threatened fauna species, however the removal of this vegetation was not judged to pose a significant threat to any threatened species.

IMPACT ASSESSMENT

The area of remnant woodland trees does not represent an endangered ecological community, due to its highly degraded state. In addition, the majority of the trees are located adjacent to the subject site, and would not be affected by the proposed retail rezoning. The removal of the trees from the subject site would not constitute a significant threat to any EEC.

No threatened flora or fauna species were found in the survey. The wooded area was not found to provide suitable habitat for any threatened fauna species, as no tree hollows were present. The partially inundated drainage lines and dam may provide some marginal habitat for threatened fauna species, however habitat of greater quality is available close to the site, and the removal of the these features of the subject site does not amount to a significant threat to any threatened fauna species.

CONCLUSIONS

The extent of habitat for threatened species on site is marginal, and habitat of greater quality is available off site. The proposed development will not have a significant impact on any threatened ecological community, flora or fauna species.

Chapter 1

Introduction

1.1 Purpose

The purpose of this report is to assess the value of flora and fauna, and predict the potential impacts on flora and fauna of the proposed retail rezoning of the property on Commercial Road, Rouse Hill.

The objectives of this report are to:

- > Describe the vegetation communities on the subject land;
- > Describe fauna habitats and fauna usage of the subject land;
- > Assess the likelihood of threatened species occurring on the subject land;
- Formally assess the impacts of the proposed development concept in terms of Section 5A of the Environmental Planning and Assessment Act 1979.
- Assess the ecological constraints and opportunities for development on the subject land; and
- Where relevant, to suggest mitigation measures to reduce the impacts of the proposed development concept on flora and fauna.

1.2 Background

The subject site forms a parcel of land on Commercial Rd, Rouse Hill, currently managed by Rouse Hill Commercial Road Development Co Pty Ltd. A retail rezoning of the land has been proposed, which will open the land for future development. The location of the subject site is shown in **Figure 1.1**.

The subject site consists of areas of exotic grassland, a former carpark area with associated landscaped vegetation, drainage channels, and a small area of woodland trees. A small semi-permanent dam is also present towards the northern corner of the site. As a result of the proposed retail rezoning of the subject site, the vegetation on the site may be cleared in its entirety.

Z

 $_{Chapter} 2$

Methods

2.1 Database Analysis

The Atlas of NSW Wildlife ¹was consulted to identify threatened flora and fauna species listed under the NSW *Threatened Species Conservation Act 1995* (TSC Act) and the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) previously recorded in the Baulkham Hills Local Government Area or which have been recorded within 5km of the subject site. Species for which the subject land may provide habitat were identified as requiring an Assessment of Significance under the *Environmental Planning and Assessment Act 1979* (EP&A Act).

2.2 Flora Survey

A one-day field assessment was carried out on Tuesday 23rd October, 2008. During the survey, the following tasks were carried out:

- > An overall assessment of the vegetation on the site;
- A targeted survey for threatened plant species as listed under the TSC Act which may occur on the subject site; and
- Assessment of the wooded areas located along the north-eastern boundary, particularly the northern corner of the site, in regards to whether they constitute any endangered ecological communities listed under the TSC Act.

Based on the results of the survey, the likely impact of the proposed development concept on the vegetation on the subject site was assessed, with particular reference to threatened plant species and endangered ecological communities listed under the TSC Act. Plant species nomenclature conforms to Harden²⁻⁵

2.3 Fauna Survey and Habitat Assessment

A one-day diurnal fauna survey and habitat assessment was conducted on Wednesday 15th October, 2008. During the fauna survey, the following tasks were undertaken:

- An overall assessment of the habitat values of the subject site for all fauna groups, with particular focus given to assessing the potential occurrence of threatened species as listed under relevant Commonwealth and NSW legislation;
- A targeted search for threatened fauna species known to occur in the Baulkham Hills LGA; and
- > An inventory of all fauna species observed at the subject site during the survey.

On completion of the survey, an assessment was undertaken of the potential impacts on fauna groups of the proposed development concept, with particular focus given to potential impacts on threatened fauna species.

Chapter **3**

Results

3.1 Flora Survey

3.1.1 General

The majority of the vegetation on the subject site is exotic-dominated grassland. These areas comprise a diverse array of exotic grass and herb species, dominated by Couch (*Cynodon dactylon*), Kikuyu (*Pennisetum clandestinum*), Paspalum (*Paspalum dilatatum*), Buffalo Grass (*Stenotaphrum secundatum*), Prairie Grass (*Bromus catharticus*), Perennial Ryegrass (*Lolium perenne*), Fire Weed (*Senecio madagascariensis*), Flat-weed (*Hypochaeris radicata*), Plantain (*Plantago lanceolata*), Common Vetch (*Vicia sativa*) and *Lotus angustissimus*. The full list of species recorded in the flora survey is provided in Appendix A. Within these areas some scattered native groundcover species occur, including *Einadia hastata, Glycine microphylla, Glycine tabacina* and *Hypericum graminium*. An example of this vegetation is shown in **Photograph 3.1**.

Landscaped areas are associated with the carpark along the western edge of the subject site adjacent to the larger off-site carpark, and around the dwellings on the subject site (see **Photograph 3.2**). These areas consist of mostly native planted tree and shrub species, such as Red Mahogany (*Eucalyptus resinifera*), Mugga Ironbark (*Eucalyptus sideroxylon*), Lemon-scented Gum (*Corymbia citriodora*), *Allocasuarina littoralis*, Blueberry Ash (*Elaeocarpus reticulatus*), and Cootamundra Wattle (*Acacia baileyana*), among others.

Two drainage lines run parallel through the centre of the site, with an associated array of mostly exotic aquatic and semi-aquatic species, including Slender Knotweed (*Persicaria decipiens*), *Cyperus eragrostis, Juncus tenuis*, and Broad-leafed Cumbungi (*Typha orientalis*). These areas are also densely vegetated with Blackberry (*Rubus fruticosus*), Large-leafed Privet (*Ligustrum lucidum*), Small-leafed Privet (*Ligustrum sinense*), and many of the species present within the adjacent exotic grassland. These drainage lines are shown in **Figure 3.1** and **Photograph 3.3**.

A stand of remnant Sydney Red Gum (*Eucalyptus tereticornis*) and Grey Box (*Eucalyptus molucanna*) trees exist in the north-western corner of the subject site (**Figure 3.1**), probably remnant of the historical vegetation community of River-flat Eucalypt Forest, listed as endangered under the TSC Act. Within this area of trees some native

groundcover species remain, although the understorey has been highly disturbed by grazing (observed during the site visit). This area will be addressed below.

Native-dominated grassland exists in patches within the area along the western edge of the subject site, in the area adjacent to the remnant trees mentioned above (see **Figure 3.1, Photograph 3.4**). These areas are currently grazed by sheep (observed during the flora survey). Dominant grass species include *Microlaena stipoides* and *Aristida ramosa*, along with *Dichelachne micrantha*, *Themeda australis* and *Austrodanthonia caespitosa*. Exotic grasses and herbs are present within this area (see Appendix A), however they are less prevalent than in the more disturbed areas of the subject site.

Photograph 3.1

Exotic-dominated grassland on the subject site

Photograph 3.2 Landscaped vegetation within carpark

Photograph 3.4 Native-dominated grassland

3.1.2 Vegetation Communities

i. River-flat Eucalypt Forest (RFEF)

An area of remnant trees that would have once formed part of the vegetation community *River-flat Eucalypt Forest of the NSW North Coast, Sydney Basin and South East Corner bioregion* exists in the north-western corner of the subject site. The majority of the extent of this patch of remnant trees is outside of the extent of the subject site, with only a narrow strip of around 3-4m located within. This area is highly degraded, and no longer represents the historical vegetation community (See **Photograph 3.5**).

The ground vegetation associated with these trees is heavily grazed, however some native herb and grass species remain (see Appendix A). A total of 17 native species remain in the patch (including canopy Eucalypts), 15 of which are listed as characteristic species of the community under the TSC Act Final Determination⁷. Species which have persisted are in low densities, with the exception of *Solanum prinophyllum* which possesses sharp spines capable of deterring grazers. The total extent of the wooded area, including area located off-site, is approximately 5545m².

Photograph 3.5

Remnant woodland trees and degraded understorey

3.2 Fauna Survey and Habitat Assessment

3.2.1 Amphibians

The site provides suitable habitat for a range of common amphibian species known to occur in the wider locality. During the survey period, only one amphibian species (*Crinia signifera*) was recorded. However, given that the site supports areas periodically inundated with water, and a small dam it is likely that a number of additional common amphibian species would find suitable forage, shelter and breeding habitat at the subject site.

Targeted searches combined with habitat assessment indicate that the subject site would not provide suitable habitat for any of the threatened amphibian species known to occur in the wider locality. Further, similar habitat to that which occurs at the subject site is also commonly found throughout the wider locality. It is therefore highly unlikely that the proposed development concept for the site would result in any significant impacts on amphibian species. Threatened amphibian species which occur within the Baulkham Hills LGA and may occur on the subject site are listed in **Table 3.1**.

3.2.2 Reptiles

No reptiles were detected during the survey. Despite the absence of records, it is likely that the subject site would provide habitat for a number of common reptile species. The majority of the subject site supports rank grassland providing suitable habitat for grassland dependent species. The small areas of forest habitat along the boundaries of the subject site may also support additional common reptiles which are known to occur in this habitat type.

The proposed development concept will result in the removal of all suitable habitat for reptiles at the subject site. However, given that habitats at the site also commonly occur in the wider locality it is unlikely that the development will result in any significant impacts on reptiles in the wider area. No threatened reptile species are known to occur in the Baulkham Hills LGA, according to the Atlas of NSW Wildlife¹.

3.2.3 Birds

A search of the Atlas of NSW Wildlife database indicates that a number of threatened bird species have been recorded in the Baulkham Hills LGA. During the survey period, none of these threatened species were detected at the subject site. Habitat assessment indicates that the site would provide suitable habitat for a range of common birds known to occur in rank grassland and small patches of forest habitat. In particular, common aggressive species such as the Noisy Miner, Pied Currawong and Australian Magpie (all of which were recorded during the survey) are known to occupy small patches of forest habitat with heavily disturbed understory such as occurs in the eastern section of the subject site. These species actively exclude many of the smaller passerines that occur in larger areas of forest with a more intact understory. The forest areas of the subject site are therefore unlikely to provide suitable habitat for any of the threatened bird species known to occur in the wider locality.

During the survey period, Latham's Snipe (a migratory wader) was recorded in the inundated grassy areas of the subject site, indicating that these areas provide suitable forage habitat for birds dependent on such freshwater habitats. However, given the degraded nature of the vegetation in these areas of the site, and that similar habitats would also occur in other parts of the locality, it is unlikely that the proposed development concept would result in the removal of significant habitat for freshwater wetland-dependent birds.

Threatened bird species which occur within the Baulkham Hills LGA and may occur on the subject site are listed in **Table 3.1**.

3.2.4 Mammals

No native mammal species were recorded during the survey period, although several European Rabbits were seen. In addition, habitat assessment indicates that the heavily degraded rank grasslands of the site are likely to provide habitat for the introduced House

Mouse and Black Rat. The small areas of forest habitat in the eastern section of the site may also provide some habitat for common, adaptable arboreal mammals such as the Common Brushtail Possum. Given the small area of forest habitat, the absence of hollow-bearing trees, surrounding development and the heavily degraded nature of vegetation at the subject site, it is unlikely that any of the threatened mammal species known to occur in the wider locality would occur at the site. The proposed development concept will not therefore result in any significant impacts on native terrestrial or arboreal mammals.

A number of small insectivorous (microchiropteran) bats are known to occur in the wider locality of the subject site, including a number of threatened species as listed in Commonwealth and NSW legislation. Some of these species are dependent on caves or similar habitat for roosting and breeding, and these habitat features do not occur at the subject site. Others are known to roost and breed in tree hollows, under decorticating bark and amongst vegetation. Habitat assessment indicates that the subject site may provide some limited roost habitat for these species. It is likely that any of the microchiropteran bats known to occur in the wider locality may forage at the subject site, however it is unlikely that the site would provide any significant roost or breeding habitat for these species. Similar forage habitat to that which occurs at the subject site can also be commonly found in the wider locality. It is therefore unlikely that the proposed development concept would result in any significant impacts on microchiropteran bats.

The Grey-headed Flying Fox (listed as Vulnerable under Commonwealth and NSW legislation) is known to occur in the wider locality and may infrequently forage at the subject site during the blossoming period of trees that occur here. However, there are no roosting and breeding colonies located at or near the subject site, and suitable forage habitat for the Grey-headed Flying-fox occurs throughout the wider locality. It is therefore unlikely that the proposed development concept would result in any significant impacts on the Grey-headed Flying-fox at the subject site or in the wider locality.

Threatened mammal species which occur within the Baulkham Hills LGA and may occur on the subject site are listed in **Table 3.1**.

3.2.5 Wildlife Corridors

Forest and grassland communities at the subject site do not currently provide any suitable fauna habitat corridor. Although there is a greater area of native vegetation to the east of the subject site, this habitat is separated from the site by residential properties. All other boundaries of the subject site abut main roads and urban development. It is therefore unlikely that the subject site would provide any significant wildlife corridor values. However, habitat at the site may currently function as part of a disjunct habitat corridor or "stepping stone" for a range of common mobile species, particularly birds and bats.

Project 8109. 29/10/2008. I:\...\8109\Maps\Figure3_1c.gif

- Z - P

	.		Within	Conservation		Assessment of
Family	Scientific Name	Common Name	5km?	Status	Likelihood of occurrence	Significance needed?
Amphibia						
	Heleioporus				Burrows in sandy soil, unlikely to occur on the subject	
Myobatrachidae	australiacus	Giant Burrowing Frog	No	V	site.	No
					Shelters under rocks and dense vegetation, associated	
	Pseudophryne				with sandstone soils. No suitable habitat is available on	
	australis	Red-crowned Toadlet	Yes	V	the subject site. Unlikely to occur on the subject site.	No
Aves						
	Lophoictinia				Inhabits a variety of timbered habitats. Could occur on	
Accipitridae	isura	Square-tailed Kite	Yes	V	the subject site.	Yes
					Depends on open water, particularly near the coast.	
					Extent of open water on the subject site unlikely to	
	Pandion				provied habitat for this species. Unlikely to occur on the	
	haliaetus	Osprey	No	V	subject site.	No
					Requires dense aquatic vegetation for breeding and	
	Stictonetta				cover. No suitable habitat is available on the subject site.	
Anatidae	naevosa	Freckled Duck	No	V	Unlikely to occur on the subject site.	No
					Requires dense aquatic vegetation for foraging/hunting.	
	Botaurus				No suitable habitat is available on the subject site.	
Ardeidae	poiciloptilus	Australasian Bittern	No	V	Unlikely to occur on the subject site.	No
					Requires dense aquatic vegetation for foraging/hunting.	
	Ixobrychus				No suitable habitat is available on the subject site.	
	flavicollis	Black Bittern	No	V	Unlikely to occur on the subject site.	No

FLORA AND FAUNA ASSESSMENT FOR COMMERCIAL ROAD, ROUSE HILL

Family	Scientific Name	Common Name	Within 5km?	Conservation Status	Likelihood of occurrence	Assessment of Significance needed?
	Callocephalon				May occur in open woodlands within urban areas. May	
Cacatuidae	fimbriatum	Gang-gang Cockatoo	Yes	V	occur on the subject site.	Yes
					Inhabits open forests and woodlands, however no nest	
	Calyptorhynchus	Glossy Black-			sites or suitable food trees (Allocasuarina sp) occur on	
	lathami	Cockatoo	Yes	V	site. Unlikely to occur on the subject site.	No
					Occurs in open Eucalypt forest and woodlands, foraging	
	Climacteris				in the understorey for insects. Degraded understorey	
	picumnus				unlikely to provide adequate resources. Unlikely to occur	
Climacteridae	victoriae	Brown Treecreeper	Yes	V	on the subject site.	No
		Black-chinned			Occurs in box woodland, however have large home	
	Melithreptus	Honeyeater (eastern			ranges and normally inhabit only large remnant patches.	
Meliphagidae	gularis gularis	subspecies)	Yes	V	Unlikely to occur on the subject site.	No
					Generalist forager on Eucalypts, occasionally in dry open	
	Xanthomyza				forest on the coast. Requires a shrubby understorey for	
	phrygia	Regent Honeyeater	Yes	E1	insect foraging Unlikely to occur on the subject site.	No
	Melanodryas				Requires structurally diverse habitats, featuring a well	
Petroicidae	cucullata	Hooded Robin	Yes	V	defined understorey. Unlikely to occur on the subject site.	No
					Migratory species, feeding mainly on Eucalypt nectar.	
					Extent of the potential habitat on the subject site unlikely	
					to attract the species, considering the larger areas of	
	Lathamus				habitat located nearby (e.g. Caddies Creek). Unlikely to	
Psittacidae	discolor	Swift Parrot	Yes	E1	occur on the subject site.	No

FLORA AND FAUNA ASSESSMENT FOR COMMERCIAL ROAD, ROUSE HILL

Family	Scientific Name	Common Name	Within 5km?	Conservation Status	Likelihood of occurrence	Assessment of Significance needed?
	Polytelis swainsonii	Superb Parrot	No	V	Normally occurs in inland NSW in a variety of habitat types. Does not breed in the area, and only marginal foraging habitat occurs on site.	No
					Inhabits Eucalypt woodlands. Roosts along creek lines in dense vegetation, and forages over a large home range. Extent of vegetation on the subject site is unlikely to attract the species, considering the larger areas of habitat	
Strigidae	Ninox connivens	Barking Owl	Yes	V	located nearby (e.g. Caddies Creek). Unlikely to occur on the subject site.	No
					Inhabits woodland. Roosts in dense vegetation, and has a large home range. May occur in fragmented landscapes, however the small extent of the habitat on site compared to the large areas of habitat located close by would be unlikely to attract the species. Unlikely to	
	Ninox strenua	Powerful Owl	Yes	V	occur on the subject site.	No
Tytonidae	Tyto novaehollandiae	Masked Owl	Yes	V	Roosts and breeds in moist, forested gullies. Unlikely to occur on the subject site.	No
Gastropoda	Tyto tenebricosa	Sooty Owl	No	V	Occurs in rainforest and moist Eucalypt forest. No suitable habitat is available on the subject site. Unlikely to occur on the subject site.	No
-	Meridolum	Cumberland Plain			Primarily inhabits Cumberland Plains Woodland,	
Camaenidae	corneovirens	Land Snail	Yes	E1	inhabiting the ground-layer. The ground layer on the site	No

Flora and Fauna Assessment for Commercial Road, Rouse Hill

Family	Scientific Name	Common Name	Within 5km?	Conservation Status	Likelihood of occurrence	Assessment of Significance needed?
					is highly degraded, and unlikely to support the species. Unlikely to occur on the subject site.	
Mammalia Dasyuridae	Dasyurus maculatus	Spotted-tailed Quoll	Yes	V	No den sites occur, however may forage in open woodland. Extent of the vegetation on site is unlikely to support sufficient prey to attract the species. Unlikely to occur on the subject site.	Νο
Emballonuridae	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Yes	V	Roosts in tree hollows. No suitable roost sites are available on site, however suitable foraging habitat may occur on site. May visit the subject site.	Yes
Malaasidaa	Mormopterus	Footore Fronteil bot	Vee	N/	Roosts in tree hollows and man-made structures. Suitable roost sites are not available on site, however they may occur close by. Suitable foraging habitat may	Yee
Petauridae	Petaurus	Eastern Freetan-Dat	Yes	V	Den in large tree hollows, live in family groups in high- rainfall mature forests. No suitable habitat present on the	No
i elaunuae	Petaurus		165	v	Occurs in Blackbutt/Bloodwood forest east of the Great Dividing Range. Requires abundant tree hollows for shelter. No suitable habitat present on the subject site.	
	norfolcensis	Squirrel Glider	No	V	Unlikely to occur on the subject site.	No
Phascolarctidae	Phascolarctos cinereus	Koala	No	V	Requires a greater home range than is provided on site. Not detected during fauna survey. Unlikely to occur on	No

FLORA AND FAUNA ASSESSMENT FOR COMMERCIAL ROAD, ROUSE HILL

Family	Scientific Name	Common Name	Within 5km?	Conservation Status	Likelihood of occurrence	Assessment of Significance needed?
					the subject site.	
Pteropodidae	Pteropus poliocephalus	Grey-headed Flying- fox	Yes	V	Not known to roost on the subject site, however marginal foraging habitat occurs, and the species may occasionally visit the site.	Yes
Vespertilionidae	Falsistrellus tasmaniensis	Eastern False Pinistrelle	Yes	V	Roosts in tree hollows, under bark and in man-made structures. Suitable roost sites are not available on site, however they may occur close by. Suitable foraging habitat may occur on site. May occur on the subject site	Yes
vesperanormale	Miniopterus schreibersii oceanensis	Eastern Bentwing-bat	Yes	v	Roosts primarily in caves and tunnels, however will disperse to hunt in forested areas. Suitable foraging habitat may occur on site. May occur on the subject site.	Yes
			Vez	V	Roosts close to water in caves, mine shafts, hollow- bearing trees, storm water channels, buildings, under bridges and in dense foliage. Forages over streams and ponds. No suitable roost sites are available on site, however suitable foraging habitat may occur on site.	Yee
	Myotis adversus Scoteanax	Large-tooted Myotis Greater Broad-nosed	Yes	v	May occur on the subject site. Roosts in tree hollows or buildings. Forages in a variety of habitats. No suitable roost sites are available on site, however suitable foraging habitat may occur on site.	Yes
	rueppellii	Bat	Yes	V	May occur on the subject site.	Yes

Flora and Fauna Assessment for Commercial Road, Rouse Hill

Impact Assessment

4.1 Impact of Development

As a result of the proposed retail rezoning, potentially all vegetation on the subject site will be removed. The majority of this vegetation is exotic-dominated, and of no great conservation significance. Other vegetation on site may hold some limited conservation value. Native-dominated grassland occurs to the north-west of the site, which may provide foraging habitat for common bird species. The periodically inundated drainage lines and small dam may provide some habitat for aquatic bird species. The removal of these areas is not predicted to impact significantly upon threatened flora, fauna or ecological communities.

The subject site contains no threatened plant species and provides no significant habitat for any threatened fauna species. The proposed development concept is projected to have a limited effect on the flora and fauna of the local area, as habitat of better quality is present outside of the subject site.

4.2 Vegetation Communities

The remnant trees in the north-western corner of the subject site probably represent a historical vegetation community of River-flat Eucalypt forest, an endangered ecological community listed under the *TSC Act*. This area has been heavily degraded through grazing, and now no longer represents the historical vegetation community. Some native species remain, though they are in low densities. The proposal will remove only a small area of this wooded area, as the majority of the trees lie outside of the subject site boundary.

A proposed council road adjacent to the site will reduce the extent of the remnant trees significantly, so trees within the subject site will become an isolated strip approximately 3-4m wide, of total area 1541m². If the narrow strip were to remain as an isolated strip following the construction of the proposed council road it would be unlikely to remain viable as an ecological community, due to increased edge-effects and loss of many of the native species currently only present within land to be occupied by the road. Note that many of the native species listed in Appendix A as occurring within this patch do not occur within the extent of the subject site.

The remnant trees no longer represent an endangered ecological community, and their removal as part of the proposed development concept will not significantly reduce the extent of any EEC. This is both because the area to be removed is very small and of a highly degraded nature, and because following the construction of the council road adjacent the extent to be removed will exist only as a strip of trees lacking many of the native species which currently exist in the entire patch.

4.3 Threatened Flora Species

No flora species listed as threatened are present in the study area. There will be no impact on threatened flora species associated with this development.

4.4 Threatened Fauna Species

The species determined in **Table 3.1** as likely to occur on the subject site were subject to Assessments of Significance under Section 5A of the EP&A Act (7 part test). The Assessments of Significance and individual conclusions regarding the potential impacts of development on these species can be found in Appendix C. From these Assessments, it can be concluded that the proposed development concept will have no significant impact on the habitat of any threatened fauna species that could potentially occur on the subject site.

No hollow-bearing trees exist on site, so the proposed development concept will not remove habitat for threatened fauna species. Some aquatic vegetation will be lost, however this is not likely to represent habitat for any threatened bird or frog species. Habitat of better quality exists in the local area, for example along Caddies Creek, approximately 300m from the subject site.

Chapter 5

Conclusion

Native vegetation present on the site consists of areas of native-dominated grassland, and an area of remnant woodland trees representative of the historical vegetation community River-flat Eucalypt Forest, an endangered ecological community listed under the NSW *TSC Act.* This patch of woodland trees has a highly degraded understorey, and as such does not represent the historical vegetation community. The removal of this vegetation will therefore not impact upon any EEC. No threatened plant species are present within the subject site.

No hollow-bearing trees are present on the subject site, however areas of the site may provide marginal aquatic habitat for some threatened fauna species. The removal of these habitat resources is predicted to have no significant effect on the fauna species which may occasionally utilize these resources (see Appendix C). The proposed retail rezoning of the subject site, which may involve the later clearing of vegetation from the subject site, is therefore not likely to have any significant effect on the flora or fauna of the subject site.

References

- 1. DECC (NSW) (2008) Atlas of NSW Wildlife http://wildlifeatlas.nationalparks.nsw.gov.au/wildlifeatlas/watlas.jsp
- 2. Harden, G. J. (1990) Flora of New South Wales Volume 1 New South Wales University Press, Kensington.
- 3. Harden, G. J. (1991) Flora of New South Wales Volume 2 New South Wales University Press, Kensington.
- 4. Harden, G. J. (1992) Flora of New South Wales Volume 3 New South Wales University Press, Kensington.
- 5. Harden, G. J. (1993) Flora of New South Wales Volume 4 New South Wales University Press, Kensington.
- 6. NSW NPWS (2001) Threat Abatement Plan for Predation by the Red Fox (*Vulpes vulpes*) NSW National Parks and Wildlife Service, Hurstville.
- NSW Scientific Committee (2004) River-Flat Eucalypt Forest on Coastal Floodplains of the NSW North Coast, Sydney Basin and South East Corner bioregions - endangered ecological community listing Department of Environment and Conservation (NSW), Hurstville, NSW.
- 8. NSW Scientific Committee (2005) Gang-gang cockatoo vulnerable species listing NSW NPWS, Hurstville.

FLORA AND FAUNA ASSESSMENT FOR COMMERCIAL ROAD, ROUSE HILL

i

Appendix A

Flora Survey Results

This species list does not include species located within landscaped areas. The species listed are only those detected in the survey, and do not represent all species present on the subject site.

Family	Species name	Common name	Exotic grassland	Wooded areas	Native grassland	Drainage lines
Monocots						
Commelinaceae	Commelina cyanea			+		
Cyperaceae	Cyperus eragrostis*		+			+
	Juncus tenuis*				+	+
Lilaceae	Asparagus asparagoides*	Bridal Creeper		+		
Lomandraceae	Lomandra filliformis				+	
	Lomandra multiflora			+		
Poaceae	Aristida vagans			+	+	
	Avena barbata*	Bearded Oat	+			
	Briza minor*	Shivery Grass	+			+
	Briza subaristata*		+		+	
	Bromus catharticus*	Prairie Grass	+			
	Bromus hordeaceaceus*	Silky Broome	+			
	Cynodon dactylon*	Couch	+			
	Dichelachne micrantha			+	+	
	Erharta erecta*		+	+	+	+
	Lachnagrostis filiformis*	Blown Grass	+			+
	Lolium perenne*	Perrenial Rye Grass	+			

Table A.1 PLANT SPECIES INDENTIFIED IN THE FLORA SURVEY

FLORA AND FAUNA ASSESSMENT FOR COMMERCIAL ROAD, ROUSE HILL

Table A.1 PLANT SPECIES INDENTIFIED IN THE FLORA SURVEY

Family	Species name	Common name	Exotic grassland	Wooded areas	Native grassland	Drainage lines
	Microlaena stipoides			+	+	
	Paspalum dilatatum*	Paspalum	+		+	
	Pennisetum clandestinum*	Kikuyu	+			+
	Austrodanthonia caespitosa			+	+	
	Sporobolus africanus*	Parramatta Grass			+	
	Stenotaphrum secundatum*	Buffalo Grass	+			
	Themeda australis	Kangaroo Grass		+	+	
	Vulpia myuros*	Rat's Tail Fescue	+			
Typhaceae	Typha orientalis	Broad-leaved Cumbungi				+
Dicots						
Trees						
Myrtaceae	Eucalyptus molucanna	Grey Box		+		
	Eucalyptus tereticornis	Sydney Red Gum		+		
Shrubs and Herbs						
Apiaceae	Daucus carota*	Wild Carrot	+			
Asclepiadaceae	Araujia sericifera*	Moth Vine	+			+
	Gomphocarpus fruiticosus*	Cotton Bush	+			
Asteraceae	Bidens pilosa*	Farmer's Friend	+			
	Circium vulgare*	Spear Thistle	+			
	Conyza sp.*	A Fleabane	+			
	Euchiton sphaericum		+			

Flora and Fauna Assessment for Commercial Road, Rouse Hill

Table A.1 PLANT SPECIES INDENTIFIED IN THE FLORA SURVEY

Family	Species name	Common name	Exotic grassland	Wooded areas	Native grassland	Drainage lines
	Gamochaeta purpurea*	Purple Cudweed	+	+		
	Hypochaeris radicata*	Flat-weed	+			
	Latuca seriola*	Prickly Lettuce	+			
	Ozothamnus diosmifolius	Everlasting		+		
	Senecio madagascariensis*	Fire Weed	+	+		
	Sonchus sp.*	Sowthistle	+			+
Caryophyllaceae	Ceratium glomeratum*	A Chickweed	+			
	Minuartia mediterranea*	Slender Sandwort	+			
	Paronychia brasiliana*	Brazilian Whitlow	+			
	Petrorhagia dubia*		+			
Chenopodiaceae	Einadia hastata	Ruby Saltbush	+	+		
	Einadia nutans	Native Seaberry	+	+		
Convolvulaceae	Wahlenbergia gracilis				+	
	Dichondra repens	Kidney Weed		+	+	
	Hypericum graminium		+			
Euphobiaceae	Poranthera microphylla			+	+	
Fabaceae	Acacia podalyriifolia*			+		
	Glycine microphylla			+		
	Glycine tabacina			+		
	Lotus angustissimus*		+		+	
	Trifolium dubium*		+			+

Flora and Fauna Assessment for Commercial Road, Rouse Hill

Table A.1 PLANT SPECIES INDENTIFIED IN THE FLORA SURVEY

Family	Species name	Common name	Exotic grassland	Wooded areas	Native grassland	Drainage lines
	Vicia sativa*	Common Vetch	+			+
Lobeliaceae	Pratia purpurescens	White Root		+		
Malvaceae	Modiola caroliniana*	Carolina Mallow				+
	Sida rhombifolia*	Paddy's Lucern	+			
Oleaceae	Ligustrum lucidum*	Large-leaved Privet		+		+
	Ligustrum sinense*	Small-leaved Privet		+		+
Phytolaccaceae	Phytolacca octandra*	Inkbush		+		
Plantaginaceae	Plantago lanceolata*	Plantane	+			+
Polygonaceae	Persicaria deipiens	Slender Knotweed				+
	Polygonum aviculare*	Wireweed	+			
	Rumex conglomeratus*	Clustered Dock				+
Primulaceae	Anagalis arvensis*	Scarlet Pimpernell				+
Rosaceae	Rubis fruiticosus*	Blackberry				+
Scrophulariaceae	Veronica plebia	Speedwell			+	
Solanaceae	Cestrum nocturnum*	Cestrum		+		
	Solanum americanum*		+			
	Solanum prinophyllum			+		
	Solanum pseudocapsicum*	Pseudocapsicum		+		
Verbenaceae	Verbena bonariensis*	Purpletop	+			+

Key: * Indicates exotic species.

FLORA AND FAUNA ASSESSMENT FOR COMMERCIAL ROAD, ROUSE HILL

Appendix B

Fauna Species List

This fauna species list is an indication of the species present in the locality, and which may be present in the study area, although are not likely on the subject site.

Table B.1FAUNA SPECIES LIST FROM THE DECC ATLAS OF NSW WILDLIFE;SEARCHED WITHIN BAULKHAM HILLS LGA

Family Name	Scientific Name	Common Name	Legal Status	Count
Amphibia				
Bufonidae	Bufo marinus*	Cane Toad	U	1
Hylidae	Litoria caerulea	Green Tree Frog	Р	1
	Litoria dentata	Bleating Tree Frog	Р	2
	Litoria fallax	Eastern Dwarf Tree Frog	Р	20
	Litoria latopalmata	Broad-palmed Frog	Р	4
	Litoria lesueuri	Lesueur's Frog	Р	2
	Litoria peronii	Peron's Tree Frog	Р	21
	Litoria phyllochroa	Leaf-green Tree Frog	Р	2
	Litoria verreauxii	Verreaux's Frog	Р	18
Myobatrachidae	Crinia signifera	Common Eastern Froglet	Р	79
	Heleioporus australiacus	Giant Burrowing Frog	V	3
	Limnodynastes dumerilii	Eastern Banjo Frog	Р	3
	Limnodynastes peronii	Brown-striped Frog	Р	30
	Limnodynastes tasmaniensis	Spotted Grass Frog	Р	5
	Pseudophryne australis	Red-crowned Toadlet	V	34
	Pseudophryne bibronii	Bibron's Toadlet	Р	5
	Uperoleia laevigata	Smooth Toadlet	Р	13
Aves				
Acanthizidae	Acanthiza chrysorrhoa	Yellow-rumped Thornbill	Р	3
	Acanthiza lineata	Striated Thornbill	Р	49
	Acanthiza nana	Yellow Thornbill	Р	26
	Acanthiza pusilla	Brown Thornbill	Р	68
	Acanthiza reguloides	Buff-rumped Thornbill	Р	5
		Chestnut-rumped		
	Calamanthus pyrrhopygius	Heathwren	Р	3
	Gerygone mouki	Brown Gerygone	Р	59
	Gerygone olivacea	White-throated Gerygone	Р	11
	Origma solitaria	Rockwarbler	Р	11

Family Name	Scientific Name	Common Name	Legal Status	Count
	Sericornis frontalis	White-browed Scrubwren	Р	246
	Sericornis magnirostris	Large-billed Scrubwren	Р	1
	Smicrornis brevirostris	Weebill	Р	10
Accipitridae	Accipiter cirrocephalus	Collared Sparrowhawk	Р	2
	Accipiter fasciatus	Brown Goshawk	Р	8
	Accipiter novaehollandiae	Grey Goshawk	Р	9
	Aquila audax	Wedge-tailed Eagle	Р	11
	Aviceda subcristata	Pacific Baza	Р	10
	Circus assimilis	Spotted Harrier	Р	1
	Elanus axillaris	Black-shouldered Kite	Р	6
	Haliaeetus leucogaster	White-bellied Sea-Eagle	Р	4
	Haliastur sphenurus	Whistling Kite	Р	2
	Hieraaetus morphnoides	Little Eagle	Р	2
	Lophoictinia isura	Square-tailed Kite	V	1
	Milvus migrans	Black Kite	Р	2
	Pandion haliaetus	Osprey	V	1
Aegothelidae	Aegotheles cristatus	Australian Owlet-nightjar	Р	35
Alaudidae	Alauda arvensis*	Eurasian Skylark	U	1
Alcedinidae	Alcedo azurea	Azure Kingfisher	Р	6
	Dacelo novaeguineae	Laughing Kookaburra	Р	114
	Todiramphus sanctus	Sacred Kingfisher	Р	18
Anatidae	Anas castanea	Chestnut Teal	Р	12
	Anas gracilis	Grey Teal	Р	2
	Anas platyrhynchos*	Mallard	U	4
	Anas superciliosa	Pacific Black Duck	Р	37
	Aythya australis	Hardhead	Р	2
	Chenonetta jubata	Australian Wood Duck	Р	49
	Cygnus atratus	Black Swan	Р	2
	Stictonetta naevosa	Freckled Duck	V	1
Anhingidae	Anhinga melanogaster	Darter	Р	2
Apodidae	Apus pacificus	Fork-tailed Swift		3
	Hirundapus caudacutus	White-throated Needletail	Р	10
Ardeidae	Ardea alba	Great Egret	Р	5

Table B.1FAUNA SPECIES LIST FROM THE DECC ATLAS OF NSW WILDLIFE;SEARCHED WITHIN BAULKHAM HILLS LGA
Family Name	Scientific Name	Common Name	Legal Status	Count
	Ardea intermedia	Intermediate Egret	Р	1
	Ardea pacifica	White-necked Heron	Р	2
	Botaurus poiciloptilus	Australasian Bittern	V	1
	Bubulcus ibis	Cattle Egret	Р	13
	Egretta novaehollandiae	White-faced Heron	Ρ	12
	Ixobrychus flavicollis	Black Bittern	V	5
	Nycticorax caledonicus	Nankeen Night Heron	Р	2
Artamidae	Artamus cyanopterus	Dusky Woodswallow	Р	11
		White-breasted		
	Artamus leucorynchus	Woodswallow	Р	1
	Artamus personatus	Masked Woodswallow	Р	2
		White-browed		
	Artamus superciliosus	Woodswallow	Р	3
	Cracticus nigrogularis	Pied Butcherbird	Р	6
	Cracticus torquatus	Grey Butcherbird	Р	76
	Gymnorhina tibicen	Australian Magpie	Р	107
	Strepera graculina	Pied Currawong	Ρ	101
Cacatuidae	Cacatua galerita	Sulphur-crested Cockatoo	Ρ	67
	Cacatua sanguinea	Little Corella	Р	10
	Cacatua tenuirostris	Long-billed Corella	Р	12
	Callocephalon fimbriatum	Gang-gang Cockatoo	V	14
		Yellow-tailed Black-		
	Calyptorhynchus funereus	Cockatoo	Р	23
	Calyptorhynchus lathami	Glossy Black-Cockatoo	V	37
	Eolophus roseicapillus	Galah	Р	54
Campephagidae	Coracina novaehollandiae	Black-faced Cuckoo- shrike	Р	64
		White-bellied Cuckoo-		
	Coracina papuensis	shrike	Р	6
	Coracina tenuirostris	Cicadabird	Р	13
	Lalage tricolor	White-winged Triller	Ρ	1
Caprimulgidae	Eurostopodus mystacalis	White-throated Nightjar	Ρ	8
Charadriidae	Vanellus miles	Masked Lapwing	Р	52
Cisticolidae	Cisticola exilis	Golden-headed Cisticola	Р	5

Family Name	Scientific Name	Common Name	Legal Status	Count
Climacteridae	Climacteris picumnus	Brown Treecreeper	V	1
		White-throated		
	Cormobates leucophaea	Treecreeper	Р	106
Columbidae	Chalcophaps indica	Emerald Dove	Р	2
	Columba leucomela	White-headed Pigeon	Р	6
	Columba livia*	Rock Dove	U	8
	Geopelia humeralis	Bar-shouldered Dove	Р	9
	Geopelia placida	Peaceful Dove	Р	13
	Leucosarcia melanoleuca	Wonga Pigeon	Р	14
	Macropygia amboinensis	Brown Cuckoo-Dove	Р	12
	Ocyphaps lophotes	Crested Pigeon	Р	43
	Phaps chalcoptera	Common Bronzewing	Р	16
	Streptopelia chinensis*	Spotted Turtle-Dove	U	76
Coraciidae	Eurystomus orientalis	Dollarbird	Р	18
Corcoracidae	Corcorax melanorhamphos	White-winged Chough	Р	7
Corvidae	Corvus coronoides	Australian Raven	Р	109
Cuculidae	Cacomantis flabelliformis	Fan-tailed Cuckoo	Р	34
	Cacomantis variolosus	Brush Cuckoo	Р	4
		Horsfield's Bronze-		
	Chalcites basalis	Cuckoo	Р	1
	Chalcites lucidus	Shining Bronze-Cuckoo	Р	8
	Cuculus pallidus	Pallid Cuckoo	Р	6
	Cuculus saturatus	Oriental Cuckoo	Р	3
	Eudynamys orientalis	Pacific Koel	Р	21
	Scythrops novaehollandiae	Channel-billed Cuckoo	Р	7
Dicaeidae	Dicaeum hirundinaceum	Mistletoebird	Р	25
Dicruridae	Dicrurus bracteatus	Spangled Drongo	Р	1
	Grallina cyanoleuca	Magpie-lark	Р	83
	Monarcha melanopsis	Black-faced Monarch	Ρ	8
	Monarcha trivirgatus	Spectacled Monarch	Р	1
	Myiagra cyanoleuca	Satin Flycatcher	Р	6
	Myiagra inquieta	Restless Flycatcher	Р	12
	Myiagra rubecula	Leaden Flycatcher	Р	11

Family Name	Scientific Name	Common Name	Legal Status	Count
	Rhipidura albiscapa	Grey Fantail	Р	109
	Rhipidura leucophrys	Willie Wagtail	Р	67
	Rhipidura rufifrons	Rufous Fantail	Р	20
		Chestnut-breasted		
Estrildidae	Lonchura castaneothorax	Mannikin	Ρ	1
	Lonchura punctulata*	Nutmeg Mannikin	U	8
	Neochmia modesta	Plum-headed Finch	Ρ	1
	Neochmia temporalis	Red-browed Finch	Ρ	332
	Stagonopleura bella	Beautiful Firetail	Ρ	1
	Taeniopygia bichenovii	Double-barred Finch	Р	15
	Taeniopygia guttata	Zebra Finch	Ρ	2
Eupetidae	Cinclosoma punctatum	Spotted Quail-thrush	Ρ	2
	Psophodes olivaceus	Eastern Whipbird	Р	81
Falconidae	Falco berigora	Brown Falcon	Р	6
	Falco cenchroides	Nankeen Kestrel	Р	4
	Falco longipennis	Australian Hobby	Р	6
	Falco peregrinus	Peregrine Falcon	Р	2
	Falco subniger	Black Falcon	Ρ	1
Fringillidae	Carduelis carduelis*	European Goldfinch	U	1
Hirundinidae	Cheramoeca leucosterna	White-backed Swallow	Р	2
	Hirundo neoxena	Welcome Swallow	Р	62
	Petrochelidon ariel	Fairy Martin	Р	2
Laridae	Larus novaehollandiae	Silver Gull	Р	5
Maluridae	Malurus cyaneus	Superb Fairy-wren	Р	173
	Malurus lamberti	Variegated Fairy-wren	Р	57
	Stipiturus malachurus	Southern Emu-wren	Р	1
Meliphagidae	Acanthorhynchus tenuirostris	Eastern Spinebill	Р	196
	Anthochaera carunculata	Red Wattlebird	Р	45
	Anthochaera chrysoptera	Little Wattlebird	Р	49
	Entomyzon cyanotis	Blue-faced Honeyeater	Р	1
	Lichenostomus chrysops	Yellow-faced Honeyeater	Р	136
	Lichenostomus fuscus	Fuscous Honeyeater	Р	10
	Lichenostomus leucotis	White-eared Honeveater	Р	33

Family Name	Scientific Name	Common Name	Legal Status	Count
	Lichenostomus melanops	Yellow-tufted Honeyeater	Р	72
		White-plumed		
	Lichenostomus penicillatus	Honeyeater	Р	9
	Manorina melanocephala	Noisy Miner	Р	111
	Manorina melanophrys	Bell Miner	Р	344
	Meliphaga lewinii	Lewin's Honeyeater	Р	117
		Brown-headed		
	Melithreptus brevirostris	Honeyeater	Ρ	4
		Black-chinned		
	Malithraptus gularis gularis	Honeyeater (eastern	V	1
	Melithreptus guians guians	Subspecies)	V D	1
		Secret Henevester	r D	30
	Myzoniela sanguinolenia	Scallet Holleyeater	r D	10
	Philemon cureogularis		r D	1
	Philemon comiculatus		٢	30
	Phylidonyris niger	Honeveater	Р	53
	Phylidonyris novaehollandiae	New Holland Honeveater	P	27
	Xanthomvza phrvaja	Regent Honeveater	E1	1
Menuridae	Menura novaehollandiae	Superb Lyrebird	P	11
Meropidae	Merops ornatus	Rainbow Bee-eater	P	4
Motacillidae	Anthus australis	Australian Pipit	P	2
Muscicapidae	Turdus merula*	Eurasian Blackbird	U	36
	Zoothera lunulata	Bassian Thrush	P	2
	Zoothera sp.	unidentified ground thrush	Р	4
Neosittidae	, Daphoenositta chrysoptera	Varied Sittella	Р	14
Oriolidae	Oriolus sagittatus	Olive-backed Oriole	Р	35
	Sphecotheres vieilloti	Australasian Figbird	Р	1
Pachycephalidae	Colluricincla harmonica	Grey Shrike-thrush	Р	85
	Falcunculus frontatus	Eastern Shrike-tit	Р	11
	Pachycephala pectoralis	Golden Whistler	Р	107
	Pachycephala rufiventris	Rufous Whistler	Р	23
Pardalotidae	Pardalotus punctatus	Spotted Pardalote	Р	112
	Pardalotus striatus	Striated Pardalote	Р	18

Family Name	Scientific Name	Common Name	Legal Status	Count
Passeridae	Passer domesticus*	House Sparrow	U	44
Pelecanidae	Pelecanus conspicillatus	Australian Pelican	Р	4
Petroicidae	Eopsaltria australis	Eastern Yellow Robin	Р	244
	Melanodryas cucullata	Hooded Robin	V	1
	Microeca fascinans	Jacky Winter	Р	5
	Petroica boodang	Scarlet Robin	Р	3
	Petroica goodenovii	Red-capped Robin	Р	1
	Petroica phoenicea	Flame Robin	Р	3
	Petroica rosea	Rose Robin	Р	14
Phalacrocoracida				
е	Phalacrocorax carbo	Great Cormorant	Р	6
	Phalacrocorax melanoleucos	Little Pied Cormorant	Р	8
	Phalacrocorax sulcirostris	Little Black Cormorant	Р	6
Phasianidae	Coturnix ypsilophora	Brown Quail	Р	6
Podargidae	Podargus strigoides	Tawny Frogmouth	Р	37
	Tachybaptus			
Podicipedidae	novaehollandiae	Australasian Grebe	Р	11
Psittacidae	Alisterus scapularis	Australian King-Parrot	Р	38
	Barnardius zonarius	Australian Ringneck	Р	1
	Barnardius zonarius barnardi	[Mallee Ringneck]	Р	1
	Glossopsitta concinna	Musk Lorikeet	Р	12
	Glossopsitta pusilla	Little Lorikeet	Р	6
	Lathamus discolor	Swift Parrot	E1	11
	Northiella haematogaster	Blue Bonnet	Р	1
	Platycercus adscitus eximius	Eastern Rosella	Р	97
	Platycercus elegans	Crimson Rosella	Р	76
	Polytelis swainsonii	Superb Parrot	V	2
	Psephotus haematonotus	Red-rumped Parrot	Р	25
	Trichoglossus chlorolepidotus	Scaly-breasted Lorikeet	Р	10
	Trichoglossus haematodus	Rainbow Lorikeet	Р	77
Ptilonorhynchidae	Ptilonorhynchus violaceus	Satin Bowerbird	Р	86
	Sericulus chrysocephalus	Regent Bowerbird	Р	1
Pycnonotidae	Pycnonotus jocosus*	Red-whiskered Bulbul	U	79

Family Name	Scientific Name	Common Name	Legal Status	Count
Rallidae	Fulica atra	Eurasian Coot	Р	5
Scientific Name Fulica atra Gallinule '		Dusky Moorhen	Р	24
	Gallirallus philippensis	Buff-banded Rail	Р	1
	Lewinia pectoralis	Lewin's Rail	Р	1
	Porphyrio porphyrio	Purple Swamphen	Р	14
	Porzana tabuensis	Spotless Crake	Р	1
Scolopacidae	Gallinago hardwickii	Latham's Snipe	Р	2
Strigidae	Ninox boobook	Southern Boobook	Р	28
	Ninox connivens	Barking Owl	V	3
	Ninox strenua	Powerful Owl	V	46
Sturnidae	Acridotheres tristis*	Common Myna	U	79
	Sturnus vulgaris*	Common Starling	U	37
Sylviidae	Acrocephalus australis	Australian Reed-Warbler	Р	5
Threskiornithidae	Platalea flavipes	Yellow-billed Spoonbill	Р	1
	Platalea regia	Royal Spoonbill	Р	1
	Plegadis falcinellus	Glossy Ibis	Р	1
	Threskiornis molucca	Australian White Ibis	Р	1
	Threskiornis spinicollis	Straw-necked Ibis	Р	1
Turnicidae	Turnix varia	Painted Button-quail	Р	3
Tytonidae	Tyto alba	Barn Owl	Р	7
	Tyto novaehollandiae	Masked Owl	V	7
	Tyto tenebricosa	Sooty Owl	V	7
Zosteropidae	Zosterops lateralis	Silvereye	Р	299
	Scientific Name	Common Name	Legal Status	Count
Gastropoda				
Camaenidae	Meridolum corneovirens	Cumberland Plain Land Snail	F1	16
Helicidae	Helix aspersa*	Brown gardensnail	 U	8
. 101101000		Brown gurdonondin	- Lenal	č
	Scientific Name	Common Name	Status	Count
Mammalia				
Acrobatidae	Acrobates pygmaeus	Feathertail Glider	Р	5
Bovidae	Bos taurus*	European cattle	U	8

FLORA AND FAUNA ASSESSMENT FOR COMMERCIAL ROAD, ROUSE HILL

Family Name	Scientific Name	Common Name	Legal Status	Count
Canidae	Canis lupus familiaris*	Dog	U	10
	Canis lupus*	Dingo, domestic dog	U	20
	Vulpes vulpes*	Fox	U	38
Dasyuridae	Antechinus flavipes	Yellow-footed Antechinus	Р	1
	Antechinus sp.	Unidentified Antechinus	Р	1
	Antechinus stuartii	Brown Antechinus	Р	36
	Dasyurus maculatus	Spotted-tailed Quoll	V	2
		Yellow-bellied Sheathtail-		
Emballonuridae	Saccolaimus flaviventris	bat	V	2
Equidae	Equus caballus*	Horse	U	6
Felidae	Felis catus*	Cat	U	13
Leporidae	Oryctolagus cuniculus*	Rabbit	U	63
Macropodidae	Macropus giganteus	Eastern Grey Kangaroo	Р	19
	Macropus sp.	kangaroo	Р	1
	Wallabia bicolor	Swamp Wallaby	Р	52
Molossidae	Mormopterus "Species 2"	Undescribed Freetail Bat	Р	13
		Little Northern Freetail-		
	Mormopterus Ioriae	bat	Р	4
	Mormopterus norfolkensis	Eastern Freetail-bat	V	16
	Mormopterus norfolkensis/sp			
	1	Unidentified Mastiff-bat	Р	1
	Tadarida australis	White-striped Freetail-bat	Р	25
Muridae	Mus musculus*	House Mouse	U	14
	Rattus fuscipes	Bush Rat	Р	19
	Rattus rattus*	Black Rat	U	40
	Rattus sp.	rat	Р	2
Peramelidae	Isoodon/Perameles sp.	unidentified Bandicoot	Р	4
	Perameles nasuta	Long-nosed Bandicoot	Р	5
Petauridae	Petaurus australis	Yellow-bellied Glider	V	92
	Petaurus breviceps	Sugar Glider	Р	61
	Petaurus norfolcensis	Squirrel Glider	V	1
Phalangeridae	Trichosurus caninus	Short-eared Possum	Р	1
	Trichosurus sp.	brushtail possum	Р	9
	Trichosurus vulpecula	Common Brushtail	Р	41

Family Name	Scientific Name	Common Name	Legal Status	Count
		Possum		
Phascolarctidae	Phascolarctos cinereus	Koala	V	6
Pseudocheiridae	Petauroides volans	Greater Glider	Р	3
	Pseudocheirus peregrinus	Common Ringtail Possum	Р	73
Pteropodidae	Pteropus poliocephalus	Grey-headed Flying-fox	V	17
	Pteropus scapulatus	Little Red Flying-fox	Р	1
Suidae	Sus scrofa*	Pig	U	1
Tachyglossidae	Tachyglossus aculeatus	Short-beaked Echidna	Р	10
Vespertilionidae	Chalinolobus gouldii	Gould's Wattled Bat	Р	43
	Chalinolobus morio	Chocolate Wattled Bat	Р	25
	Falsistrellus tasmaniensis	Eastern False Pipistrelle	V	4
	Miniopterus schreibersii			
	oceanensis	Eastern Bentwing-bat	V	28
	Myotis adversus	Large-footed Myotis	V	1
	Nyctophilus geoffroyi	Lesser Long-eared Bat	Ρ	6
	Nyctophilus gouldi	Gould's Long-eared Bat	Р	17
	Nyctophilus sp.	long-eared bat	Р	6
	Scoteanax rueppellii	Greater Broad-nosed Bat	V	6
	Scotorepens orion	Eastern Broad-nosed Bat	Ρ	10
	Vespadelus darlingtoni	Large Forest Bat	Р	5
	Vespadelus pumilus	Eastern Forest Bat	Р	2
	Vespadelus regulus	Southern Forest Bat	Р	5
	Vespadelus sp.	Unidentified Eptesicus	Р	1
	Vespadelus vulturnus	Little Forest Bat	Р	51
Vombatidae	Vombatus ursinus	Common Wombat	Р	13
Reptilia				
Agamidae	Amphibolurus muricatus	Jacky Lizard	Р	3
	Physignathus lesueurii	Eastern Water Dragon	Р	16
	Pogona barbata	Bearded Dragon	Р	6
Boidae	Morelia spilota spilota	Diamond Python	Р	1
		Eastern Snake-necked		
Chelidae	Chelodina longicollis	Turtle	Р	7
Elapidae	Cacophis squamulosus	Golden-crowned Snake	Р	2
	Demansia psammophis	Yellow-faced Whip Snake	Р	1

Family Name	Scientific Name	Common Name	Legal Status	Count
	Furina diadema	Red-naped Snake	Р	1
	Pseudechis porphyriacus	Red-bellied Black Snake	Р	12
	Pseudonaja textilis	Eastern Brown Snake	Р	2
Gekkonidae	Diplodactylus vittatus	Wood Gecko	Р	6
	Oedura lesueurii	Lesueur's Velvet Gecko	Р	3
	Phyllurus platurus	Broad-tailed Gecko	Р	13
	Underwoodisaurus milii	Thick-tailed Gecko	Р	6
Scincidae	Acritoscincus platynota	Red-throated Skink	Р	1
	Anomalopus swansoni	Punctate Worm-skink	Р	1
		Cream-striped Shinning-		
	Cryptoblepharus virgatus	skink	Р	10
	Ctenotus robustus	Robust Ctenotus	Р	7
	Ctenotus taeniolatus	Copper-tailed Skink	Р	19
	Egernia cunninghami	Cunningham's Skink	Р	4
	Egernia whitii	White's Skink	Р	2
	Eulamprus quoyii	Eastern Water-skink	Р	32
	Eulamprus tenuis	Barred-sided Skink	Р	5
	Lampropholis delicata	Dark-flecked Garden Sunskink	Р	40
	Lampropholis guichenoti	Pale-flecked Garden Sunskink	Р	24
	Lampropholis sp.	unidentified grass skink	Р	4
	Lygisaurus foliorum	Tree-base Litter-skink	Р	6
	Saiphos equalis	Three-toed Skink	Р	8
	Saproscincus mustelinus	Weasel Skink	Р	1
	Tiliqua scincoides	Eastern Blue-tongue	Р	9
Typhlopidae	Ramphotyphlops nigrescens	Blackish Blind Snake	Р	1
Varanidae	Varanus varius	Lace Monitor	Р	9

Appendix C

Assessments of Significance

C.1 Fauna Species

C.1.1 Square-tailed Kite (Lophoictinia isura)

Background

The Square Tailed Kite is a medium sized raptorial bird species, specialised as a predator on passerine bird nestlings and canopy insects. It is characterised by its broadly barred "fingertips" on its wings. This species inhabits a variety of timbered habitats, but shows particular preference to wooded waterways. The Square-tailed Kite is listed as Vulnerable on Schedule 2 of the TSC Act. The species was listed mainly due to its ecological specialisation and poor recovery potential. It is also listed as Migratory under the EPBC Act. Migratory means that the family or species is subject to international agreements.

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

The Square-tailed Kite breeds from July to November. The large, loose nest consists of sticks, 15-25 m up in leafy trees. It is not likely that this species nests on the subject site due to the lack of watercourses and it was not observed nesting there at the time of the site inspection. Although the species may forage over the study area from time to time, it is not likely that the proposed development concept will have an adverse impact on the life cycle of the species such that a viable local population is placed at risk of extinction.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

There are no endangered populations of the Square-tailed Kite listed under the TSC Act.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction

Not applicable.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality.

The area of potential habitat to be removed as part of the proposed action is limited to a small number of *Eucalyptus* trees and expanse of exotic pasture which would provide suboptimal foraging habitat.

The proposal will not further fragment or isolate the potential habitat for this species that occurs on the subject land as potential habitat exists only as an isolated patch of remnant trees. The nearby bushland at Caddies Creek provides higher quality habitat in the locality.

The habitat that will be removed as a result of the proposal cannot be considered important for this species, due to its isolated nature and as it is not known if the species occurs in the study area. The nearby bushland at Caddies Creek provides higher quality habitat in the locality.

(e) Whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly).

No critical habitat for this species has currently been identified by the Director-General of the DECC.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

A recovery plan has not been prepared for this species.

No threat abatement plans are relevant to this species.

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process

The proposal constitutes the key threatening process of Clearing of native vegetation. However, this process is not likely to affect this species as the proposed action will only result in the removal of a small strip of trees from the already isolated vegetation. Higher quality habitat in the locality exists at Caddies Creek only 300m from the subject site.

The following key threatening processes may be increased by the proposal:

Predation by feral cats; and

> Ecological consequences of high frequency fires.

As this species spends the majority of its time in the canopy, the threat of predation by feral cats can be considered to be low. Habitat can be changed if there is a high frequency of fire; however, this is not likely to increase as the subject land is already isolated and likely to be subject to a low fire threat.

Conclusion

The species is not known to occur and has not been detected in the study area. The species inhabits woodland surrounding watercourses. Such habitat is not located within the study site, so the proposal is not likely to have an adverse effect on a local population of this species. There will be clearing of potential habitat, however absence of a watercourse in the vicinity of the area to be cleared and the presence of higher quality habitat at the nearby Caddies Creek makes it very unlikely that the subject site is significantly important to the species in the locality. No significant impact on this species is likely.

C.1.2 Gang-gang Cockatoo

Background

The range of the Gang-gang Cockatoo once stretched from Adelaide to southern Queensland, however this has now contracted to an area concentrated on the western slopes of the Great Dividing Range. The current distribution of this species is patchy, with non-breeding flocks sometimes converging on coastal woodlands, outside their normal breeding range. The Gang-gang Cockatoo is listed as Vulnerable in Part 1 of Schedule 1 of the TSC Act⁸. The Gang-gang Cockatoo is also listed as Endangered under the EPBC Act.

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

The Gang-gang Cockatoo occurs in temperate eucalypt woodland and open forest. A small amount of potential habitat exists in the subject land, however the area set to be affected by the proposed action only constitutes marginal habitat. As the species has not been detected within the study area, and the species favours old growth forests for nesting and roosting, the removal of trees as part of the proposed action is unlikely to have an adverse effect on the species such that a viable local population is placed at risk of extinction.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction, There are no endangered populations of the Gang-gang Cockatoo listed under the TSC Act.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction

Not applicable.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality.

The area of potential habitat to be removed as part of the proposed action is limited to a small number of *Eucalypt* trees which may provide foraging habitat.

The proposal will not further fragment or isolate the potential habitat for this species that occurs on the subject land as potential habitat consists of isolated trees. Compared to the higher quality habitat at Caddies Creek only 300m from the study site, the size of the habitat to be removed as a result of the proposed action is not significant.

The habitat that will be removed as a result of the proposal cannot be considered important for this species, due to its isolated nature and as it is not known if the species occurs in the study area. Potential habitat of better quality at Caddies Creek only 300m from the study site.

(e) Whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly).

No critical habitat for this species has currently been identified by the Director-General of the DECC.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

No threat abatement plans are relevant to this species.

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The proposal constitutes the key threatening process of clearing of native vegetation. However, this process is not likely to affect this species as other higher quality potential habitat exists close to the subject site at Caddies Creek.

The following key threatening processes may be increased by the proposal:

- Predation by feral cats; and
- > Competition and grazing by the feral European rabbit.

As this species spends the majority of its time in the canopy, the threat of predation by feral cats can be considered to be low. The main threat is a loss of habitat, which besides habitat clearance, can occur through over-grazing by feral rabbits preventing the regeneration of habitat. The area of habitat to be affected by the proposed action is not significant in the locality as there is a quality area of bushland at Caddies Creek only 300m from the subject site.

Conclusion

The species is not known to occur and has not been detected on the subject land. Potential habitat does occur on the subject site but is also contained outside the proposed development area and so the proposal is not likely to have an adverse effect on a local population of this species. Clearing of potential habitat will occur associated with the proposed development, however the area to be affected is not of value for the species, and the higher quality potential habitat at Caddies Creek is more likely to contribute to the viability of this species in the locality. No significant impact is likely on this species and no Species Impact Statement is required.

C.1.3 Yellow-bellied Sheathtail-bat (Saccolaimus flaviventris), Eastern Freetail-bat (Mormopterus norfolkensis), Eastern False Pipistrelle (Falsistrellus tasmaniensis), Large-footed Myotis (Myotis adversus), Greater Broad-nosed Bat (Scoteanax rueppellii), Eastern Bent-wing Bat (Miniopterus schreibersii oceanensis), Greater Broad-nosed Bat (Scroteanax ruepellii)

Background

Microchiropteran bats are a diverse group of bats ranging in size from 3-40 grams, but which have in common several aspects of their ecology. Six threatened microchiropteran bat species have been recorded in the Baulkham Hills LGA and have the potential to occur on the subject land. These bat species can be addressed collectively, due to their common potential use of the study area as roosting habitat. Additionally, most of these species

prefer roosting trees associated with water, for example streams and ponds, near which these species forage. The Eastern Bent-wing Bat (*Miniopterus schreibersii oceanensis*) differs from the other bats in this group in that it does not usually use tree hollows as roosting habitat. These species are listed as Vulnerable in Part 1 of Schedule 2 of the TSC Act.

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

The proposed development will involve the removal of trees which have the potential to form hollows and provide potential habitat for microchiropteran bat species. However, the removal of this narrow strip of remnant trees is not likely to have an adverse effect on these species in this locality. These species are highly mobile and not likely to be impacted by the removal of these trees.

A viable population of Eastern Bentwing Bat is not likely to be affected by the proposed development as the species would only use the study area for foraging.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

There are no populations of these microchiropteran bat species listed as endangered under the TSC Act.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction

Not applicable.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality.

The proposed development will result in the removal of the edge of an isolated patch of remnant trees. *Eucalyptus* trees have the potential to form hollows and provide foraging and nesting habitat. However, no hollow bearing trees were observed, hence the likelihood of the proposed development adversely affecting habitat of these species is not significant.

The proposal will not further fragment or isolate the potential habitat for these species.

The habitat to be removed consists of the edge of an isolated patch of remnant trees. No hollow bearing trees were found, hence this is unlikely to constitute important habitat for these species.

(e) Whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly).

No critical habitat for these species has currently been identified by the Director-General of the DECC.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

Recovery plans have not been prepared for these species.

No threat abatement plans are relevant to these species.

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The proposal constitutes the key threatening process of clearing of native vegetation. However, these processes are not likely to affect these species as other potential habitat exists outside the subject site and will not be subject to clearance.

The key threatening process of competition from feral honeybees may be increased by the proposal. Although *Eucalyptus* trees have the potential to form hollows, the likelihood that the proposal will decrease roosting habitat through competition with feral honeybees for future tree hollows is not significant.

Conclusion

Potential roosting and foraging habitat for the majority of these species occurs in areas to be removed as part of the proposed action. However, the extent of potential habitat to be removed will be small, and better quality habitat exists in the locality at Caddies Creek. No significant impact is likely on this species and no Species Impact Statement is required.

C.1.4 Koala (Phascolarctos cinereus)

Background

The Koala has a disjunct distribution within eucalypt woodlands and forests over much of the eastern portion of Australia from north-east Queensland to South Australia and extending west of the Great Dividing Range, where it is concentrated mainly along inland rivers. It mainly occurs on the central and northern coast in NSW, where it feeds on a variety of *Eucalyptus* species. The Koala is listed as Vulnerable on Schedule 2 of the TSC Act.

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

The Koala has not been recorded in the study area, however potential habitat is present in the isolated patch of remnant trees, where the preferred feed tree Forest Red Gum (*Eucalyptus tereticornis*) is present. The proposed action involves the removal of several trees, including several *E. tereticornis* specimens. However, these trees survive as part of a small isolated patch of remnant vegetation. The lack of any corridors connecting this patch to nearby habitat is likely to deter access of Koalas to the trees to be removed as part of the proposed action. Therefore the proposed development will not have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

There are endangered populations of Koala listed on the TSC Act, however, the ranges of these populations do not cover the locality.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction

Not applicable.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality.

The area of potential habitat to be removed as part of the proposed action is limited to a small number of *Eucalyptus* trees which are unlikely to provide potential foraging habitat.

The small strip of trees to be removed as part of the proposed action will not further fragment or isolate the potential habitat for this species that occurs on the subject land.

The habitat that will be removed as a result of the proposal cannot be considered important for this species, due to its isolated nature and as it is not known if the species occurs in the study area. Potential habitat of better quality occurs within 300m of the subject land.

(e) Whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly).

No critical habitat for this species has currently been identified by the Director-General of the DECC.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

A recovery plan has been drafted for the Koala. The main objective of this plan is to reverse the decline of the species in the state and maintain healthy and breeding populations in their current range. Specific Objectives of the recovery plan that are applicable to this proposal are:

- > 1. To conserve Koalas in their existing habitat; and
- > 2. To rehabilitate and restore Koala habitat and populations.

The proposal involves the removal of a narrow strip of trees from the edge of an isolated patch of remnant trees, an area of potential habitat containing the preferred feed tree *Eucalyptus tereticornis*. The trees to be removed as part of the proposed action only provide a small area of potential habitat compared with the habitat located within 300m at Caddies Creek which is being managed in the long term.

The Red Fox Threat Abatement Plan is relevant to this species⁶. The following objectives of the plan are relevant to the proposal:

- Ensure that fox control programmes undertaken for conservation purposes in New South Wales focus on those threatened species which are most likely to be impacted by fox predation; and
- Ensure that fox control programmes are effective in minimising the impacts of fox predation on targeted threatened species.

The Koala is not a priority species for conservation from fox predation according to the threat abatement plan. However, it is a species that may be preyed upon by foxes and is likely to benefit from fox control.

The proposed development may exacerbate the potential impacts from foxes on this species if control is not undertaken to deter foxes from the area. However, fox control on the subject land is considered inappropriate due to the proximity of residential areas and ineffective due to the high probability of reintroduction from neighbouring properties.

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The proposal constitutes the key threatening process of Clearing of Native Vegetation. However, this process is not likely to affect this species as the vegetation to be cleared represents a very small proportion of potential habitat for the Koala compared to the potential habitat provided in the study area.

The following key threatening processes may be increased by the proposal:

- Predation by feral cats;
- Predation by the European red fox;
- > Ecological consequences of high frequency fire;

There is a direct threat of predation from foxes and cats. Habitat can be changed if there is a high frequency of fire; however, this is not likely to increase as the subject land is already isolated and likely to be subject to a low fire threat.

Conclusion

This species has not been recorded on the subject land. Some of the trees to be removed represent a preferred tree species for the Koala, however the isolated nature of the trees is likely to prevent them from being used by the species. The nearby bushland at Caddies Creek which is already being managed is of higher quality. No significant impact of the proposed action is likely on this species and no Species Impact Statement is required.

C.1.5 Grey-headed Flying-fox (Pteropus poliocephalus)

Background

The Grey-headed Flying-fox is the largest bat in Australia, distributed along the east coast from Bundaberg in Queensland to Melbourne, Victoria. It occurs as far west as the western slopes of the Great Dividing Range in northern NSW. It occurs in subtropical and temperate rainforests, tall sclerophyll forests and woodlands, heaths and swamps. Grey-headed Flying-foxes migrate according to the availability of native fruits, nectar and pollen. They roost in large "camps" which are generally within 20km of a food source. The Grey-headed Flying-fox is listed as Vulnerable on Schedule 2 of the TSC Act and Vulnerable under the EPBC Act.

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

The Grey-headed Flying-fox has not been detected in the study area but may use the study area for foraging. The species roosts in known camps and therefore the study area will only be used for foraging. Insignificant areas of foraging habitat will be removed from the subject site compared to the total range used by the species and the large area of quality bushland being managed at the nearby Caddies Creek.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

There are no endangered populations of the Grey-headed Flying-fox listed under the TSC Act.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction

Not applicable.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality.

The area of potential habitat to be removed as part of the proposed action is limited to a small number of *Eucalypt* trees which may provide potential foraging habitat.

The proposal will not further fragment or isolate the potential habitat for this species that occurs on the subject land. The nearby bushland of higher quality at Caddies Creek provides greater potential foraging habitat.

The habitat that will be removed as a result of the proposal cannot be considered important for this species, due to its isolated nature and the mobility of this species. Potential habitat of better quality occurs at Caddies Creek where a plan of management is being implemented.

(e) Whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly).

No critical habitat for this species has currently been identified by the Director-General of the DECC.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

A recovery plan has not been prepared for this species.

The Red Fox Threat Abatement Plan is relevant to this proposal but not to this species due to the mobility of the species.

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The proposal constitutes the key threatening process of Clearing of native vegetation. However, this process is not likely to affect this species as only a small strip of the existing bushland is to be affected and other potential habitat of higher quality exists within 300m at Caddies Creek.

Conclusion

The subject site only provides potential foraging habitat of a negligible area as part of the total range for this highly mobile species. As such, the proposal is not likely to have an adverse effect on a local population of this species and no species impact statement is necessary.

PLANNING PROPOSAL PROPOSED MIXED-USE RESIDENTIAL AND RETAIL/COMMERCIAL DEVELOPMENT LOT 5 COMMERCIAL ROAD, ROUSE HILL

TRANSPORT & ACCESSIBILITY ASSESSMENT

28 August 2015 Ref: 15018

Prepared by

John Coady Consulting Pty Ltd

Townplanning and Traffic Consultants

7/19A-21 Addison Road, Manly NSW 2095 PO Box 528, Manly NSW 1655 Tel: (02) 9977 4622; Fax (02) 9977 4022 Mobile: 04111 24333 Email: john@johnco.com.au

Table of Contents

1.	INTRODUCTION
2.	PUBLIC TRANSPORT7
3.	PEDESTRIANS AND CYCLING10
4.	HOME TRAVEL PLAN12
5.	PARKING
6.	TRAFFIC 17
7.	CONCLUSION
APP APP	ENDIX A TRAFFIC COUNT DATA ENDIX B TRAFFIC FLOW DIAGRAMS ADOPTED FOR THE PURPOSE

APPENDIX B TRAFFIC FLOW DIAGRAMS ADOPTED FOR THE PURPOSES OF THE SIDRA ANALYSIS

LIST OF ILLUSTRATIONS

- FIGURE 1 LOCATION
- FIGURE 2 SITE
- FIGURE 3 ROAD HIERARCHY
- FIGURE 4 EXISTING TRAFFIC AND PARKING CONTROLS
- FIGURE 5A EXISTING TRAFFIC FLOWS
- FIGURE 5B REASSIGNED EXISTING TRAFFIC FLOWS.
- FIGURE 6 TRAFFIC ASSIGNMENT.

1. Introduction

This report has been prepared to accompany a planning proposal to The Hills Shire Council for a proposed mixed-use residential and retail/commercial development on the site at Lot 5 Commercial Road, Rouse Hill (Figures 1 and 2).

The proposed development site is located opposite the future northern wing of the Rouse Hill Town Centre, approximately 300m north of the existing Town Centre development. It has a total site area of 20242m². However, a strip along the eastern side of the site is to be dedicated to Council for the purposes of road construction. The road, which is to be constructed as part of the proposed development, will provide an extension of Green Hills Drive from Carnoustie Street through to Commercial Road with four-way intersections at both ends. This new section of Green Hills Drive will provide a substantial improvement in pedestrian, cyclist, public transport and motorist access to Rouse Hill Town Centre and the future Rouse Hill Railway Station. That railway station, which will form part of the North West Rail Link connecting Rouse Hill Railway Station with Chatswood Railway Station, is currently under construction and due for completion in 2019.

The Green Hills Drive Extension will occupy $6634m^2$ (33%) of the total site area. The total developable site area is therefore $13608m^2$, with frontages to Commercial Road, to the proposed Green Hills Drive Extension and to Carnoustie Street.

A concept plan for the proposed development is reproduced in the following pages. It comprises:

- a total of 7 residential flat buildings containing a total of 333 apartments comprising 82
 x 1-bedroom, 218 x 2-bedroom, and 33 x 3-bedroom apartments
- a total of 1684m² retail/commercial floorspace over 2 storeys.

It is anticipated that the proposed development will be served by a total of 431 off-street parking spaces in basement carparks beneath the residential flat buildings

Vehicular access for the proposed development is proposed via a combined entry/exit driveway off the Green Hills Drive Extension.

The purpose of this report is to assess the accessibility of the proposed development and its traffic and parking implications.

1

Lot 5 Commercial Road Rouse Hill | Urban Design Report

architectus

100
0)
O
(D)
-=
1
CO
3
ß

Key statistics of the proposed masterplan 4.3

An area schedule of propose development is provided adjacent. Development provides: - A Floor Space Ratio of 2.3:1 across the site excluding the proposed road. - 33% of site dedicated for the new road which will provide a significant benefit to the local community. Plus additional communal open spaces for the site occupants.

25% of the site as built footprint only (38% of the developed site)

- Maximum building heights - 12 storeys at centre of site, set back from views.

				and and a second se		
Building Envelope	GBA (sqm)	Storeys	HOB (3.1m floor to floor, 4m ground)	GFA (sqm)	GFA efficiency	
A	700	6	10,2	1,574	Residential	75%
8	751	7	22.6	3,940	Commercial	85%
C (excluding attic)	685	9	19.5	3,084		
C (attic)	521	5	25.7	782		
0	691	12	38.1	6,215		
Ш	169	ţ1	38.1	6,216		
F (excluding attic)	603	9	19.5	2,713		
F (attic)	452	C1	25.7	678		
U	703	σ	35.0	4,744		
Commercial Podium (G)	066	N	7.1	1,684		
Fotal	5,110			31,631		
Fotal Commercial GFA				1,684		
fotal Residential GFA				29,947		
otal number of apartments*				333		
based on 90sqm GFA / apartment						
ite areas and FSR			Site Area	FSR		
(otal site (incl. road)			ara wa			

Lot 5 Commercial Road Rouse Hill | Urban Design Report

2.32

1.56 1.89

20,242 16,740 13,608

Site excluding SP2 land (incl. other road)

Site excl. road

32

2. Public Transport

The proposed development site enjoys a high level of public transport accessibility via a number of bus services which run along Windsor Road, Commercial Road and Mile End Road, and which serve the Rouse Hill Regional Centre located approximately 300m to the south of the site. In the future, the site will also have public transport service via the Rouse Hill Railway Station in the Regional Centre which forms part of the North West Rail Link which will connect the Rouse Hill Regional Centre with Chatswood. The site therefore enjoys convenient access to all of the public transport services, both existing and planned, which currently serve the Regional Centre and which will do so in the future.

Bus services operated by Hills Bus which run along Windsor Road, Commercial Road and Mile End Road and serve the Rouse Hill Regional Centre are illustrated on the schematic map reproduced in the following pages and comprise:

Route 601	A daily service between Parramatta and Rouse Hill Town Centre.
Route 603	Rouse Hill Town Centre to Parramatta via Kellyville, Glenhaven, Castle Hill &
	East Baulkham Hills. Service operates daily.
Route 607X	Rouse Hill Town Centre to City via North West T-Way and M2 Busway. Service
	operates daily.
Route 608	Windsor to Rouse Hill Town Centre via McGraths Hill and Windsor Road.
	Service operates Monday – Friday.
Route 610 & 610X	Rouse Hill Town Centre to City via Beaumont Hills, Kellyville, Castle Hill,
	Baulkham Hills, M2 Busway and Lane Cove Tunnel.
Route 617X	Rouse Hill to City via Beaumont Hills, North West T-way and M2 Busway.
	Service operates Monday to Friday.
Route 619	Rouse Hill Town Centre to Macquarie Park via North-West T-Way, Kellyville,
	Castle Hill, Baulkham Hills and M2 Busway. Service operates daily.
Route 641	Rouse Hill to Round Corner, Dural via Annangrove Road. Service operates
	Monday to Friday.
Route 746	Riverstone to Box Hill via Windsor Road.
Route T65	Parramatta to Rouse Hill Town Centre via Westmead and North-West T-Way
	(stops at all T-Way Stations between Parramatta and Rouse Hill). Service operates
	daily.
Route T66	Parramatta to Rouse Hill via Westmead and North-West T-Way (stops at all
	TWay Stations between Parramatta and Rouse Hill). Service operates daily.
Route T75	Blacktown to Rouse Hill/Riverstone via Parklea. Service operates daily.

The proposed development site is located within a walking distance of approximately 230m to bus stops in Commercial Road (see Figure 4 in Chapter 6).

7

3. Pedestrians and Cycling

Pedestrian activity in the area is largely accommodated on footpaths which form part of the road network serving the site. As a consequence of the new Masters Hardware Store development, long concrete pathways have been constructed in Commercial Road while new concrete footpaths can be expected to be constructed along the Green Hills Drive Extension as part of this development proposal.

Designated cycle routes which serve and pass through the area are shown on the *Rouse Hill On-Road Off-Road Cycleway Plan* reproduced in the following pages. As can be observed, the proposed development site is conveniently located in respect of the designated off-road cycleway which runs along the western side of Windsor Road, and the designated on-road cycleway located on Mile End Road.

Rouse Hill on road off road cycleways
4. Home Travel Plan

The following Home Travel Plan has been prepared in the interests of providing guidance to future residents of the proposed development in order to reduce car trips and encourage the use of sustainable transport.

However, in circumstances where completion of the residential development proposal is some years away at which time specific details of travel options might have changed, the preparation of a detailed Home Travel Plan at this stage is not warranted. The Home Travel Plan and its detail is more appropriately prepared just prior to occupation of the building at a time when current travel arrangements can be specified. Notwithstanding, in order to provide guidance for the preparation of a Home Travel Plan for occupants of the proposed apartment buildings, the following "generic" Home Travel Plan is proposed.

HOME TRAVEL PLAN

Provide Information on Public Transport Services

The proposed development site currently enjoys a high level of public transport accessibility in the form of bus services which run along Windsor Road and Commercial Road and which serve Rouse Hill Regional Centre. The pending completion of the North West Rail Link to Rouse Hill Railway Station will provide future residents with access to railway travel. The Home Travel Plan will provide the following information on those public transport services.

Railway Service

- a copy of the Sydney Rail Network map showing the extent of the rail service throughout the Sydney Metropolitan Service and the location of Rouse Hill Railway Station on the North West Rail Link Railway Line
- details of up to date train timetables for Rouse Hill Railway Station
- a map showing the shortest and safest pedestrian route between the site and Rouse Hill Railway Station.

Bus Services

- details of conveniently accessible bus services including:
 - service number
 - origin/destination

- travel route along streets in the vicinity of the site
- nearest bus stop
- bus service timetables
- a map showing the shortest and safest pedestrian route between the site and the nearest bus stops.

Bicycle Access

The Home Travel Plan will identify:

- the location of designated bicycle parking spaces for residents and their visitors in the proposed development
- a map showing cycleways conveniently accessible to the site, and demonstrating how those cycleways connect with the regional bicycle network.

The Home Travel Plan will provide information on the most convenient and safest Pedestrian Routes connecting the site with prominent destinations in the vicinity including a map showing the most convenient and safest Pedestrian Route connecting the Site with Rouse Hill Railway Station, Rouse Hill Shopping Centre, schools in the area, and open space/recreational facilities in the area.

Implementation

Just prior to the initial occupation of the residential apartments, the "generic" Home Travel Plan will be finalised with the inclusion of relevant information such as train and bus timetables, illustrations showing the shortest and most convenient routes between the site and the full range of destinations encompassed by the Plan, etc.

Hard copies of the Home Travel Plan will be produced for distribution to new owners/tenants of the residential apartments.

A website will also be established for the building, and the Home Travel Plan will be included on that website. The Body Corporate of the building will be responsible for updating the Home Travel Plan on, at least, an annual basis.

5. Parking

Table 1 in Clause 2.1 of Part C Section 1 of *The Hills Development Control Plan (DCP) 2012* (the "DCP") specifies the parking requirements for the residential, retail and commercial components of the proposed development. A further guide to the appropriate parking provision to serve the proposed development is provided by the RTA Guidelines¹. The parking requirement for the proposed development calculated in accordance with those two guides is:

PARKING REQUIREMENTS							
	The Hills	s DCP	RTA Guidelines*				
RESIDENTIAL							
Resident							
82 x 1-bedroom	1 space per unit	= 82spaces	0.6 space per unit = 49 spaces				
218 x 2-bedroom	2 spaces per unit	= 436paces	0.9 space per unit = 196 spaces				
33 x 3-bedroom	2 spaces per unit	= 66 spaces	1.40 spaces per unit $=$ 46 spaces				
Sub Total Resident		584 spaces	291 spaces				
Visitor	2 spaces per 5 units	= 133 spaces	1 space per 5 units $=$ 67 spaces				
TOTAL RESIDENTIAL		717 spaces	358 spaces				
RETAIL							
842m ² GLFA	1 space per 18.5m ²	= 46 spaces	$6.1 \text{ spaces per } 100 \text{m}^2 \text{ GLFA} = 52 \text{ spaces}$				
COMMERCIAL							
842m ² GLFA	1 space per 25m ²	= 34 spaces	1 space per $40m^2$ GLFA = 21 spaces				
TOTAL RETAIL &		80 spaces	= 73 spaces				
COMMERCIAL		_					
TOTAL		797 spaces	431 spaces				

*For the purposes of this table the RTA Guidelines **residential** parking requirement is based on the rates specified for Metropolitan Sub-Regional Centres

**For the purposes of this table it has been assumed that 50% of the retail/commercial floorspace will be retail and 50% will be commercial.

As can be observed, the parking requirement for the proposed development calculated in accordance with the DCP is nearly double the requirement calculated in accordance with the RTA Guidelines. A discrepancy of this magnitude demands further examination. In this respect it is noted that:

• it is relevant that the parking requirements specified by the RTA Guidelines for residential flat buildings and retail/commercial floorarea are derived from surveys of residential flat buildings and retail/commercial developments located within the Sydney Metropolitan Area. In contrast, the basis for the parking requirements specified by the DCP is not disclosed by the DCP

RTA "Guide to Traffic Generating Developments. Section 5 – Parking Requirements for Specific Landuses" October 2002

- the RTA Guidelines specify parking requirements for high density residential flat buildings located in Metropolitan Regional (CBD) Centres and Metropolitan Sub-Regional Centres. Although the proposed development is located immediately adjacent to the northern boundary of the Rouse Hill Regional Centre, the higher parking requirement specified by the Guidelines for high density residential flat buildings in Metropolitan Sub-Regional Centres has been adopted
- while the RTA Guidelines recommend that the minimum number of off-street visitor parking spaces is 1 space for every 5 units, it notes that ".... Council's may wish to reduce this requirement for buildings located in close proximity to pubic transport, or where short term unit leasing is expected." By virtue of its convenient location to public transport services and to the Rouse Hill Regional Centre, the proposed development could be considered to be in this category. In this respect, it is particularly relevant that the residential visitor parking requirement specified by the DCP is extraordinarily high at 2 spaces per 5 units. It is submitted that this particularly high parking requirement for visitor parking is not warranted, and represents a massive waste of resources

It can be reasonably concluded that the parking requirement specified by the Hills DCP for the proposed development is substantially excessive and therefore inconsistent with established State Government policy which promotes sustainable development, particularly in circumstances where the residential component of the proposed development is high density, the site is conveniently located in respect of the Rouse Hill Regional Centre, and has convenient access to all public transport services which currently serve the Regional Centre and which are planned to serve the Regional Centre in the future, in particular Rouse Hill Railway Station which forms part of the South West Rail Link proposal.

Relevantly, Objective 3J-1 of *SEPP 65 – Apartment Design Guide* which came into force on 17th July 2015 states that:

Objective 3J-1

Carparking is provided based on proximity to public transport in Metropolitan Sydney and centres in regional areas.

Design Criteria

- 1. For development in the following locations:
 - on sites that are within 800m of a railway station or light rail stop in the Sydney Metropolitan Area, or

• on land zoned, and sites within 400m of land zoned, P3 Commercial Core, B4 Mixed Use or equivalent in a nominated regional centre.

The minimum carparking requirement for residents and visitors is set out in the Guide to Traffic Generating Developments, or the carparking requirement prescribed by the relevant Council, whichever is less.

The carparking needs for a development must be provided off-street.

That Objective and the accompanying Design Criteria supports the proposition that the parking requirement specified by the RTA Guidelines should be preferred over the higher parking requirement calculated in accordance with Council's DCP.

Further, Clause 30 of SEPP 65 says:

30. Standards that cannot be used as grounds to refuse development consent or modification of development consent

- (1) If an application for the modification of a development consent or a development application for carrying out of development to which this Policy applies satisfies the following design criteria, the consent authority must not refuse the application because of those matters:
 - a) If the carparking for the building will be equal to, or greater than, the recommended minimum amount of carparking specified in Part 3J of the Apartment Design Guide.....

It is therefore recommended that the proposed development should be required to satisfy the parking requirements calculated in accordance with the RTA Guidelines, that is provision of 431 parking spaces to serve the proposed development.

6. Traffic

Existing and Proposed Road Network

The classifications assigned to the road network serving the site by the RMS (Figure 3) identify the following classified State and Regional Roads in the vicinity of the site:

State Roads	Regional Roads
Windsor Road	Schofields Road
	Annangrove Road

By virtue of its immediate access to Windsor Road, the proposed development site therefore enjoys convenient access to the higher order road network which serves and passes through the area. Although not included in the RMS classification, Commercial Road, Mile End Road and Withers Road perform an important sub-arterial/collector road function for the area, as will Green Hills Drive when the Green Hills Drive Extension is constructed as part of the proposed development.

The existing road network adjoining the proposed development site has the following characteristics:

Commercial Road	4 lane divided carriageway
Carnoustie Street	2 lane carriageway

The Green Hills Drive Extension is expected to have the same carriageway characteristics as the existing section of that road to the north of Carnoustie Street as follows:

Green Hills Drive Extension 4 lane divided carriageway

It is anticipated that construction of the Greenhills Drive Extension will involve the following intersection treatment:

Green Hills Drive/Commercial Road/Caddies BoulevardTraffic signal controlGreen Hills Drive/Carnoustie StreetRoundabout control

The existing traffic and parking control on the road network serving the site are shown on Figure 4.

Existing Traffic Conditions

To provide an indication of existing traffic conditions on the road network serving the site, a count of traffic activity was conducted during the AM and PM peak periods on Tuesday, 28th July 2015 at the following intersections:

Windsor Road/Commercial Road Commercial Road/Masters Hardware Access Commercial Road/Caddies Boulevard Commercial Road/McCombe Avenue Green Hills Drive/Carnoustie Street

The detailed results of those traffic counts are included as Appendix A to this report, while the weekday AM and PM peak period traffic flows through those intersections are summarised on Figure 5A. As shown on Figure 5A, the weekday AM peak period is assumed to be between 8.15 - 9.15 am while the weekday peak period is assumed to be between 5.30 - 6.30 pm.

Reassigned Existing Traffic Conditions

Vehicular access between Commercial Road and areas to the north is currently available via a route comprising McCombe Avenue – Greensborough Avenue – Carnoustie Street – Green Hills Drive – Mile End Road. Construction of the Green Hills Drive Extension will make that circuitous route redundant with direct access between Commercial Road and Mile End Road via Green Hills Drive. It will result in a relocation of existing traffic flows from the McCombe Avenue – Carnoustie Street – Green Hills Drive route to the more direct Green Hills Drive and Green Hills Drive Extension, and could also attract additional traffic from the existing traffic flows in the area because of the significantly improved Level of Service provided by the Green Hills Drive Extension. Reassignment of existing traffic flows from the McCombe Avenue route to the Green Hills Drive Extension route is illustrated on Figure 5A. As can be observed, weekday peak period traffic flows along the Green Hills Drive Extension, reassigned from the McCombe Avenue route, are in the order of 100 vtph in each direction.

In order to take into account the possible transfer of other traffic to the new route and likely growth in background traffic activity in the area, the traffic assessment in this report also addresses post-development traffic conditions taking into account both the reassigned existing traffic flows and the potential for additional traffic demand as a consequence of other traffic transfer and background traffic growth. An allowance 100 vtph in each direction

during both the weekday AM and PM peak hour was made to allow for this additional traffic demand.

Projected Traffic Generation Potential

An indication of the traffic generation potential of the proposed development is provided by the typical traffic generation rates specified by the RTA Guidelines² for the residential and retail/commercial components of the proposed development. For the purposes of calculating the traffic generation potential of the residential component of the proposed development, the weekday peak period traffic generation rates specified by the RTA Guidelines for *high density residential flat buildings in Metropolitan Sub-Regional Centres* were adopted.

The weekday peak period traffic generation potential of the proposed development is calculated on the table below.

	PROJECTED TRAFFIC GENERATION POTENTIAL						
			ΤΟΤΑΙ	Α	М	Р	M
			IUIAL	IN	OUT	IN	OUT
Residential	333 units	0.29 vtph per unit	100	20	80	80	20
Retail	842m ²	$AM - 5.0$ vtph per $100m^2$	40	20	20		
		$PM - 12.5 \text{ vtph per } 100 \text{m}^2$	110			55	55
Commercial	842m ²	2 vtph per 100m ²	20	15	5	5	15
Total			160/230	55	105	140	90

While there is no reliable way to accurately assign that projected traffic generation potential to the road network serving the site, it has been assigned to the road network serving the site taking into account existing traffic flows on that road network. The assignment adopted for the purposes of this assessment is:

North on Green Hills Drive	30%
East on Mile End Road	10%
North on Windsor Road (via Mile End Road)	15%
West of Rouse Road	5%
South on Green Hills Drive Extension	70%
South on Caddies Boulevard	30%
East on Commercial Road	5%
South on Windsor Road (via Commercial Drive)	30%
West of Schofields Road (via Commercial Road)	5%

The additional traffic demand on the road network serving the site as a consequence of the proposed development is shown on Figure 6.

EXISTING TRAFFIC FLOWS FIGURE 5A

REASSIGNED EXISTING TRAFFIC FLOWS FIGURE 5B

TRAFFIC ASSIGNMENT FIGURE 6

Traffic Implications – Road Network Capacity

Reference to Figure 6 indicates that the main traffic implications of the proposed development in terms of road network capacity concern the effect of the additional traffic demand generated by the proposed development on the operating performance of the Commercial Road/Green Hills Drive Extension/Caddies Boulevard and Commercial Road/Windsor Road intersections. That effect can be assessed using the SIDRA traffic model, and criteria for the interpret

For the purposes of the analysis the following intersection configurations have been assumed:

Commercial Road/Green Hills Drive – traffic signal control Green Hills Road/Carnoustie Avenue – single lane roundabout Commercial Road/Windsor Road – traffic signal control (existing)

The results of the SIDRA analysis of key intersections on the road network serving the site are set out in the schedule reproduced in the following pages under the following traffic conditions:

Existing Traffic Conditions - As identified by the count of traffic activity at the various intersections conducted as part of this assessment (Figure 5A).

Post-Development Traffic Conditions - With the existing traffic conditions reassigned to take into account construction of the Green Hills Drive Extension (Figure 5B), plus the additional traffic demand on the road network serving the site as a consequence of the proposed development (Figure 6).

Post-Development (Background Traffic Growth) Conditions – Existing traffic conditions reassigned to take into account construction of the Green Hills Drive development, plus an additional 100 vtph in both directions on the Green Hills Drive Extension to take into account additional traffic transferring to the new road from other routes in the area and background traffic growth, plus the additional traffic demand on the road network serving the site as a consequence of the proposed development (Figure 6).

The traffic flows through the various intersections adopted for the purposes of the SIDRA analysis are shown on diagrams reproduced in Appendix B. The intersection configuration adopted for the Commercial Road/Green Hills Drive/Caddies Boulevard, Green Hills Drive/Carnoustie Street, and site access/Green Hills Drive Extension intersections for the purposes of the SIDRA analysis are shown on the three pages following the SIDRA results schedule.

The results of the SIDRA analysis confirm satisfactory intersection operation at all intersections analysed under each traffic activity condition, confirming that the proposed development has no unacceptable traffic implications in terms of road network capacity.

Traffic-Related Environmental Effect

The proposed development has no unacceptable traffic-related environmental effect because nearly all of the traffic that it generates will approach/depart the site on the higher order road network which serves and passes through the area comprising Windsor Road, Commercial Road, Mile End Road and Green Hills Drive (on completion of the Green Hills Drive Extension).

Existing Conditions

		AM Pe	ak Hour	PM Pe	ak Hour
	Traffic	Level of	Average	Level of	Average
	Control	Service	Delay (sec)	Service	Delay (sec)
Windsor Rd-Mile End Rd	Signals	С	37	С	35
Windsor Rd-Commercial Rd	Signals	А	14	В	18
Commercial Rd-Masters Access	Signals	А	5	А	6
Commercial Rd-Caddies Blvd	Give-way	С	34	В	27
Commercial Rd-McCombe Ave	Give-way	А	13	В	15
Carnoustiee St-Green Hills Dr	Give-way	А	5	А	5

Average delay for the worst movement is reported for roundabout and, sign controlled intersections

Post Development Conditions

		AM P	eak Hour	PM Pe	ak Hour
	Traffic	Level of	Average	Level of	Average
	Control	Service	Delay (sec)	Service	Delay (sec)
Windsor Rd-Mile End Rd	Signals	С	38	С	36
Windsor Rd-Commercial Rd	Signals	В	15	В	26
Commercial Rd-Masters Access	Signals	А	5	А	6
Commercial Rd-Caddies Blvd	Signals	В	16	В	18
Commercial Rd-McCombe Ave	Give-way	А	13	В	15
Carnoustiee St-Green Hills Dr	Roundabout	А	7	А	5
Green Hills Dr-Access	Stop	А	8	А	9

Average delay for the worst movement is reported for roundabout and, sign controlled intersections

Post Development (with background traffic growth) Conditions

		AM P	eak Hour	PM Pe	ak Hour
	Traffic	Level of	Average	Level of	Average
	Control	Service	Delay (sec)	Service	Delay (sec)
Windsor Rd-Mile End Rd	Signals	С	39	С	42
Windsor Rd-Commercial Rd	Signals	В	20	С	32
Commercial Rd-Masters Access	Signals	А	5	А	6
Commercial Rd-Caddies Blvd	Signals	В	17	В	19
Commercial Rd-McCombe Ave	Give-way	В	16	В	17
Carnoustiee St-Green Hills Dr	Roundabout	А	8	А	8
Green Hills Dr-Access	Stop	А	9	А	10

Average delay for the worst movement is reported for roundabout and, sign controlled intersections

28

Criteria for Interpreting Results of SIDRA Analysis

1. Level of Service (LOS)

ity.
uired.
equired.
rol mode.
ontrol mode.

2. Average Vehicle Delay (AVD)

The AVD provides a measure of the operational performance of an intersection as indicated on the table below which relates AVD to LOS. The AVD's listed in the table should be taken as a guide only as longer delays could be tolerated in some locations (ie inner city conditions) and on some roads (ie minor side street intersecting with a major arterial route).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way and Stop Signs
А	less than 14	Good operation.	Good operation.
В	15 to 28	Good with acceptable delays and spare capacity.	Acceptable delays and spare capacity.
С	29 to 42	Satisfactory.	Satisfactory but accident study required.
D	43 to 56	Operating near capacity.	Near capacity and accident study required.
E	57 to 70	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode.	At capacity and requires other control mode.

3. Degree of Saturation (DS)

The DS is another measure of the operational performance of individual intersections.

For intersections controlled by traffic signals³ both queue length and delay increase rapidly as DS approaches 1, and it is usual to attempt to keep DS to less than 0.9. Values of DS in the order of 0.7 generally represent satisfactory intersection operation. When DS exceeds 0.9 queues can be anticipated.

For intersections controlled by a roundabout or GIVE WAY or STOP signs, satisfactory intersection operation is indicated by a DS of 0.8 or less.

³ The values of DS for intersections under traffic signal control are only valid for cycle length of 120 secs.

7. Conclusion

The foregoing assessment leads to a conclusion that:

- the proposed development site is located opposite the future northern wing of the Rouse
 Hill Town Centre, approximately 300m north of the existing Town Center development
- In that location, the proposed development enjoys convenient access to all of the public transport services, both existing and planned, which currently serve Rouse Hill Regional Centre and which will do so in the future. In this respect, the proposed development site enjoys a high level of public transport accessibility via a number of bus services which run along Windsor Road, Commercial Road and Mile End Road, and which serve the Rouse Hill Regional Centre. In the future, the site will also have public transport service via the Rouse Hill Railway Station in the Regional Centre which forms part of the North West Rail Link which will connect the Rouse Hill Regional Centre with Chatswood Railway Station.
- construction of the Green Hills Drive Extension as part of the proposed development will provide a substantial improvement in pedestrian, cyclist, public transport and motorist access to Rouse Hill Town Centre and the future Rouse Hill Railway Station which will form part of the North West Rail Link connecting the Rouse Hill Railway Station with Chatswood Railway Station.
- the proposed development site is conveniently located in respect of the designated offroad cycleway which run along the western side of Windsor Road and through the Rouse Hill Town Centre, and the designated on-road cycleway located on Mile End Road
- because of the relatively large scale of the proposed development, it is appropriate that it be subject to a Home Travel Plan which has the objective of reducing travel by private car and encouraging the use of sustainable transport. A "generic" Home Travel Plan is included as Chapter 4 of this report
- there is a substantial discrepancy between the off-street parking requirement for the proposed development calculated in accordance with the Hills DCP and that calculated in accordance with the RTA Guidelines. In circumstances where the requirements specified by the RTA Guidelines are based on surveys of existing residential flat

buildings and retail/commercial developments while the basis of the parking requirement specified by the DCP is not disclosed, the parking requirement specified by the RTA Guidelines for Metropolitan Sub-Regional Centres is preferred. That conclusion is reinforced by the recent changes to SEPP 65 which prevents a Consent Authority refusing consent to an Application on parking grounds if it satisfies the parking requirement calculated in accordance with the RTA Guidelines. The parking requirement for the proposed development calculated in accordance with the RTA Guidelines is 431 off-street parking spaces comprising 291 resident parking spaces, 67 resident visitor parking spaces, and 73 spaces for the retail/commercial component of the proposed development. This off-street parking provision is considered to be adequate to serve the proposed development

- the proposed development site enjoys convenient access to the higher order road network which serves and passes through the area comprising Windsor Road, Commercial Road and Mile End Road. The intersections on the road network serving the site likely to be most affected by traffic generated by the proposed development are the intersections of Commercial Road/Green Hills Drive/Caddies Boulevard, Green Hill Drive/Carnoustie Street and Windsor Road/Commercial Road.
- existing traffic conditions at key intersections on the road network serving the site were identified by a count of traffic activity at those intersections during the weekday AM and PM peak periods, and the results of those counts are summarised on Figure 5A
- construction of the Green Hills Drive Extension as part of the proposed development will result in a transfer of traffic activity from an existing route comprising McCombe Avenue – Greensborough Avenue – Carnoustie Street – Green Hills Drive, to the more direct Green Hills Drive – Green Hills Drive Extension, and that reassignment of existing traffic flows is indicated on Figure 5B. The reassignment of existing traffic flows suggests that during the weekday AM and PM peak periods, two-way traffic flows on the Green Hills Drive Extension will be in the order of 100 vtph in each direction
- to take into account the potential for even more traffic to transfer to the new route, and for some growth in background traffic activity on the road network in the area, weekday peak period traffic flows on the Green Hills Drive Extension were increased by an additional 100 vtph in each direction for assessment purposes

- the traffic generation potential of the proposed development calculated in accordance with the RTA Guidelines is 160 vtph during the weekday AM peak period, and 230 vtph during the weekday PM peak period
- the SIDRA analysis was conducted for the following traffic conditions:

Existing Traffic Conditions - As identified by the count of traffic activity at the various intersections conducted as part of this assessment (Figure 5A).

Post-Development Traffic Conditions - With the existing traffic conditions reassigned to take into account construction of the Green Hills Drive Extension (Figure 5B), plus the additional traffic demand on the road network serving the site as a consequence of the proposed development (Figure 6).

Post-Development (Background Traffic Growth) Conditions – Existing traffic conditions reassigned to take into account construction of the Green Hills Drive development, plus an additional 100 vtph in both directions on the Green Hills Drive Extension to take into account additional traffic transferring to the new road from other routes in the area and background growth, plus the additional traffic demand on the road network serving the site as a consequence of the proposed development (Figure 6).

- the results of the SIDRA analysis are summarised in the SIDRA analysis schedule included in Chapter 6 revealing that all intersections operate satisfactorily under existing and projected post-development traffic demand
- in these circumstances, it can be concluded that the proposed development has no unacceptable effect in terms of road network capacity
- the proposed development has no unacceptable traffic-related environmental effect because nearly all of the traffic that it generates will approach/depart the site on the higher order road network which serves and passes through the area comprising Windsor Road, Commercial Road, Mile End Road and Green Hills Drive (on completion of the Green Hills Drive Extension)
- it can therefore be concluded that the proposed development has no unacceptable traffic implications.

Appendix A Traffic Count Data

Mobile.0418239019 Client : John Coady Consulting Job No/Name : 5700 ROUSE HILL Commercial Rd Day/Date : Tuesday 28th July 2015

 Time Per
 Windsor Rd
 Commercial
 Windsor Rd

 0700 - 0715
 Not Required
 Mindsor Rd

 0715 - 0730
 Not Required
 Not Required

 0730 - 0745
 Not Required
 Not Required

 0745 - 0800
 Not Required
 Not Required

 0815 - 0830
 Not Required
 Not Required

 0815 - 0830
 Not Required
 Not Required

 0815 - 0800
 Not Required
 Not Required

 0815 - 0800
 Not Required
 Not Required

 0815 - 0800
 Not Required
 Not Required

 0815 - 0830
 Not Required
 Not Required

 0815 - 0800
 Not Required
 Not Required

 0815 - 0800
 Not Required
 Not Required

TOT

SOUTH Windsor Rd

EAST Commercial

NORTH Windsor Rd

Peak Per 0700 - 0800

TOT 0

PEDS

SOUTH

EAST

NORTH

PEDS

00000

000

0000

00

000

0000

0000

0

0

0

		TOT	886	868	871	973	956	961	983	890	7388
HTU	or Rd	ы	275	275	262	320	328	357	309	278	2404
SOL	Winds	œ	34	40	34	62	56	76	68	57	427
ST	arcial -	-	62	45	80	66	80	74	74	20	551
EA	LIIIIION .	ш	12	19	21	24	47	45	47	25	240
RTH	or Rd		22	20	12	25	23	23	42	25	192
NOF	Winds	ы	481	469	462	476	422	386	443	435	3574
Combined		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	34	44	49	37	39	61	41	39	344
HH	or Rd	ы	20	14	21	15	14	25	14	17	140
SOL	Winds	ш	3	2	9	2	e	ю	e	e	25
ST	d creat	3	1	1	4	4	3	33	e		19
EA		ш	1	8	-	2	2	5	9	e	28
RTH	sor Rd		+	-	2	1	с С	ŝ	4	+	18
NON	Winds	Ч	8	18	15	13	14	20	11	15	114
Heavies		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	852	824	822	936	917	900	942	851	7044
HTH	or Rd	I	255	261	241	305	314	332	295	261	2264
SOL	Winds	жI	31	38	28	60	53	73	65	54	402
ST	d since	L	61	44	76	62	77	71	71	70	532
EA		щ	11	11	20	22	45	40	41	22	212
RTH	sor Rd	L	21	19	10	24	20	18	38	24	174
NO	Winds	н	473	451	447	463	408	366	432	420	3460
Lights		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End

		TOT	3598	3668	3761	3873	3790
HTH	or Rd	н	1132	1185	1267	1314	1272
SOL	Winds	щ	170	192	228	262	257
ST	ier crai		253	271	300	294	298
EA	- Common	щ	76	111	137	163	164
RTH	or Rd	-	79	80	83	113	113
ON	Winds	н	1888	1829	1746	1727	1686
Combined		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900
		TOT	164	169	186	178	180
HTU	or Rd	н	70	64	75	68	20
SOL	Winds	R	13	13	14	11	12
ST	Ter crait	(m)	10	12	14	13	6
EA	umon-	ы	12	13	10	15	16
RTH	sor Rd	L	5	7	11	13	13
ON	Winds	F	54	60	62	58	60
Heavies		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900
		TOT	3434	3499	3575	3695	3610
HE	or Rd	н	1062	1121	1192	1246	1202
SOL	Winds	R	157	179	214	251	245
ST	ierciar	L	243	259	286	281	289
EA		щ	64	98	127	148	148
RTH	sor Rd	Ē	74	73	72	100	100
No No	Wind	ы	1834	4769	1684	1669	1626
Lights		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	745 - 0845	0060 - 0080

	TOT	0	0	0	0	0	0	0	0	0		0					TOT	2	855	1042	926	979	957	1047	943	1098	892	898	778	794	21203			TOT	3802	3904	3909	3926	4045	3980	3831	3666	3362	4045
UTH	sor Rd	0	0	0	0	0	0	0	0	0		0			HTH	Pol son		-1	383	431	404	446	438	450	396	463	395	396	336	321	4002	UTH	sor Rd	Ξ	1664	1719	1738	1730	1747	1704	1650	1590	1448	1747
so	Wind	L													US US	Mind		<1	47	58	51	61	61	46	60	72	71	94	20	85	9/1	so	Wind	ЖI	217	231	219	228	239	249	297	307	320	239
EAST	mierciai	0	0	0	0	0	0	0	0	0		0			AST		Illiercial	"	49	61	58	50	57	62	67	69	51	59	45	51	6/9	AST	mercial	-	218	226	227	236	255	249	246	224	206	255
	In Com	L		_											-			21	28	32	31	27	31	25	47	27	30	31	22	17	348		I Com	2	118	121	114	130	130	129	135	110	100	130
NORTH	indsor Re	0	0	0	0	0	0	0	0	0		0			NODTH	I NON		-1	29 19	36 24	56 26	59 26	48 22	37 27	54 19	39 28	27 18	17 17	79 26	95 25	177 0/	NORTH	indsor Ro	L L	90 95	96 60	10 101	08 94	78 96	57 92	21 82	46 89	02 86	78 96
L	er W	630	645	700	715	730	745	800	815	830		HR			L		IAA	e	545 32	600 4	615 3!	630 36	645 34	700 4	715 35	730 43	745 32	800 30	815 27	830 29	10 42	pe	M	er	530 14	345 15	700 15	715 15	730 15	745 15	800 14	815 13	830 12	-IR 15
PED	Peak F	1530 - 1	1545 - 1	1600 - 1	1615 - 1	1630 - 1	1645 - 1	1700 - 1	1715 - 1	1730 - 1		PEAK			Combine		i	Jamil	1530 - 1	1545 - 1	1600 - 1	1615 - 1	1630 - 1	1645 - 1	1700 - 1	1715 - 1	1730 - 1	1745 - 1	1800 - 1	1815 - 1	Per Er	Combine		Peak P	1530 - 1	1545 - 1	1600 - 1	1615 - 1	1630 - 1	1645 - 1	1700 - 1	1715 - 1	1730 - 1	PEAK
	TOT	0	0	0	0	0	0	0	0	0	0	0	0	0			101	5	29	44	42	38	26	25	27	22	11	14	13	~	299			TOT	153	150	131	116	100	85	74	60	46	100
HI	or Rd														LTU.		or ka	-1	15	21	20	17	6	16	11	13	7	10	9	4	149	НТИ	or Rd	н	73	67	62	53	49	47	41	36	27	49
SOL	Winds													0	100	200	Minds	ΣI	2	3	2	0	3	0	0	0	0	0	-	0	11	sou	Winds	R	7	∞	5	3	3	0	0	۱	٢	e
ST	rercial	A		equired											0.T		nercial .	1	-	3	5	3	1	2	0	-	0	0	0	0	16	ST	ercial	-	12	12	11	9	4	3	1	-	0	4
Ē	nun	Q		Not Re											V L		Comm	×Ι	2	1	2	5	2	1	7	0	0	1	0	0	21	EA	Comm	ш	10	10	10	15	10	8	8	4	1	10
RTH	sor Rd													0	1120	RIN	sor Rd	-1	0	-	0	-	0	0	٢	0	0	7	0	0	4	RTH	sor Rd		2	2	-	2	-	+	2	-	1	-
N	Wind																Wind	-1	6	15	13	12	11	9	8	80	4	2	9	4	98	NO	Wind	F	49	51	42	37	33	26	22	20	16	33
PEDS	Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End		Heavies		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End	Heavies		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR
ţs	3				Rd												Ì	TOT	826	866	884	941	931	022	916	076	881	884	765	786	0910			TOT	3649	3754	3778	3810	3945	3895	3757	3606	3316	945
Result					nercia											Ŧ	Rd		368	410	384	429	429	434 1	385	450 1	388	386	330	317	710 1	Γ	Rd	 -	591 3	652 3	676 3	677 3	698	657 3	609	554 3	421 3	698 3
antic				Itina	Comr	2015										sour	Vindsor	α I	45	55	49	61	58	46	60	72	71	94	69	85	765 4	SOUT	Vindsor	2 2	210 1	223 1	214 1	225 1	236 1	249 1	297 1	306 1	319 1	236 1
EA Auth	06940	130043		Consu		h Julv	<u>.</u>										rcial V		48	58	53	47	56	60	67	68	51	59	45	51	663		cial V	_	206	214	216	230	251	246	245	223	206	2511
DA		D010	2013	Coadv	ROUS	lav 28t	5									EAS	Comme	œI	26	31	29	22	29	24	40	27	30	30	22	17	327	FAS.	Comme	R	108	111	104	115	120	121	127	109	66	120
A.R.	10 10	,14000	0701 +0) uhol	5700	Tueso	5									E	r Rd		19	23	26	25	22	27	18	28	18	16	26	25	273	H	r Rd		93	96	100	92	95	91	80	88	85	95
R.O.	0000 HC		NIODIIG.	•	me) 										NOR	Windso	-I	320	421	343	357	337	431	346	431	323	299	273	291	4172	NOR	Windso	T	1441	1458	1468	1471	1545	1531	1399	1326	1186	1545
AL AND O	(MARCHAR) =	A B		Client	eN/oN dol.	Dav/Date	147.141								L	Lights		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End	l inhts		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR

R.O.A.R. DATA	Reliable, Original & Authentic Results	Ph.88196847, Fax 88196849.	Mobile.0418239019
	14 4 P	A A)

: John Coady Consulting : 5700 ROUSE HILL Commercial Rd : Tuesday 28th July 2015 Job No/Name Day/Date Client

Masters 0 0 0 0 0 WEST commercian But 0 0 0 0 0 0700 - 0800 0715 - 0815 0730 - 0830 0745 - 0845 0800 - 0800 PEAK HR PEDS Peak Per TOT 0 00 0 0 0 0 0 0 EAST commercian pd 0 Not required Masters 0 WEST Commercian Da 0 0700 - 0715 0715 - 0730 0730 - 0745 0745 - 0800 0800 - 0815 0815 - 0830 0830 - 0845 0845 - 0900 **Per End** PEDS Time Per

TOT

EAST Dd 0 0 0

NORTH

NORTH

0

0 0 0 00

0

0

0

0

		TOT	136	125	138	202	197	224	258	176	1456
ST	d circiai	н	81	65	92	66	114	112	124	91	778
EA		2	Ŧ	+	+	2	0	5	7	3	23
RTH	ters	Ē	1	3	-	0	+	3	7	2	18
NOF	Mas	R)	0	1	2	3	4	3	5	9	24
ST	iercrai	٦	3	4	2	12	5	7	4	8	45
WE		н	50	51	40	86	70	94	111	66	568
Combined		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	10	13	10	7	14	16	17	9	93
ST	d crai	н	9	10	2	4	9	8	11	3	50
EA	d d	αı	0	0	0	0	0	0	0	0	0
RTH	ters	-	0	0	0	0	0	0	0	0	0
ION	Mas	ш	0	0	0	0	0	0	0	0	0
ST	rer crai	Ĩ	0	0	0	0	0	0	0	0	0
WE	d d	Т	4	3	8	3	8	8	9	3	43
Heavies		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	126	112	128	195	183	208	241	170	1363
ST	ercial d	н	75	55	90	95	108	104	113	88	728
EA		αI	1	1	1	2	з	5	7	в	23
RTH	ters	1	-	3	1	0	+	3	7	2	18
NON	Mas	щ	0	1	2	3	4	3	5	9	24
ST	Ter cran	Ē	m	4	2	12	5	2	4	80	45
WE		Ч	46	48	32	83	62	86	105	63	525
Lights	Allowing and and and	Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End

			TOT	601	465	537	623	679
1	10	d ciciai	I	337	256	305	325	350
× L	Y I		ш	5	4	9	10	15
110		ters	٦	5	4	2	4	11
NOR	LON I	Mast	2	9	9	g	10	12
CT	10	d di	L	21	18	19	24	16
MILE	AVE.	d	I	227	177	196	250	275
Combined	Compliance		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900
			TOT	40	30	31	37	47
10	10	d ciai	Ī	22	16	12	18	25
L.	Į,		RI R	0	0	0	0	0
DTU		ters	F	0	0	0	0	0
	2 No	Mas	2	0	0	0	0	0
TOT	100	Inci ciai	F	0	0	0	0	0
100	AA		F	18	14	19	19	22
Unandan	Leavies		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900
			TOT	561	435	506	586	632
CT .	10	d cian	T	315	240	293	307	325
L.	N L		8	5	4	9	10	15
0TU	LIN I	ters	L	5	4	2	4	11
	2 Z	Mas	ы	9	9	6	10	12
10	101	ner ciar	F	21	18	19	24	16
	AA		н	209	163	177	231	253
1 tabén	LIGRIS		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900

PEAK HR 253 16 12 11 15 325 632 PEAK HR 22 0 0 0 0 0 0 25 47 PEAK HR 275 16 12 11 15 350 679

	TOT	•	0	0	0	0	0	0	0	0		0						101	170	183	163	167	164	184	200	193	169	215	170	152	2130			TOT	683	677	678	715	741	746	777	747	706	111
AST	Inercial	0	0	0	0	0	0	0	0	0		0			ACT	101	nercial	-1	70	73	66	55	60	79	92	69	57	83	53	45	802	AST	nercial	н	264	254	260	286	300	297	301	262	238	301
ш —	Com											L					Com	×Ι	14	9	9	3	80	7	7	7	9	5	5	e	77	E	Comn	۳I	29	23	24	25	29	27	25	23	19	25
IORTH	asters	0	0	0	0	0	0	0	0	0		0			UTOO		asters	-1	4	7	2	10	9	9	2	9	∞	5	e	4	73	ORTH	asters		28	30	29	29	25	27	26	22	20	26
2	ar M				_	_						L					al M	ΧI	80	15	6	14	15	12	41	14	11	11	10	11	4 144	Ň	al Ma	[2]	46	53	50	55	55	51	50	46	43	50
WEST	ommerci	0	0	0	0	0	0	0	0	0		0			VAIPOT	NESI.	mmerch	-1	6 8	14	11 11	3 12	1 14	4 16	9 11	6 11	1 6)5 6	1 8	2 7	12	WEST	mmercia		71 45	36 51	52 53	37 53	30 52	00 44	11 34	33 31	59 27	1 34
رم ا	Per C	630	645	700	715	730	745	800	815	830		HR			L		3	er	545 6	600 6	615 6	630 7	645 6	700 6	715 6	730 8	745 8	800 10	815 9	830 8	-6 pt	pe	ပိ	er	630 27	645 26	700 26	715 26	730 28	745 30	800 34	815 36	830 35	HR 34
PED	Peak F	1530 - 1	1545 - 1	1600 - 1	1615 - 1	1630 - 1	1645 - 1	1700 - 1	1715 - 1	1730 - 1		PEAK			- Harris	Compin		1 ime F	1530 - 1	1545 - 1	1600 - 1	1615 - 1	1630 - 1	1645 - 1	1700 - 1	1715 - 1	1730 - 1	1745 - 1	1800 - 1	1815 - 1	Per Er	Combine		Peak P	1530 - 1(1545 - 1(1600 - 1	1615 - 1	1630 - 17	1645 - 1	1700 - 1	1715 - 18	1730 - 18	PEAK
	TOT	0	0	0	0	0	0	0	0	0	0	0	0	0				101	9	8	6	6	9	4	7	+	0	2	1	0	53			TOT	32	32	28	26	18	12	10	4	8	10
AST	reruar	10													10	10	rercial	-1	5	4	7	8	3	4	9	0	0	-	0	0	38	ST	ercial	ы	24	22	22	21	13	10	7	+	1	7
E	Comm								L						L	EA	Comm	ЖI	0	0	0	0	0	0	0	0	0	0	0	0	0	EA	Comm	œ١	0	0	0	0	0	0	0	0	0	0
ORTH	sters		equired											0	1120	NIH.	sters		0	0	0	0	0	0	0	0	0	0	0	0	0	RTH	sters		0	0	0	0	0	0	0	0	0	0
N	Ma		Not r														Ma	ш	0	0	0	0	0	0	0	-	0	0	0	0	-	NO	Mas	۳I	0	0	0	0	-	+	1	-	0	1
NEST	mercia	Pd												0	1011	VEST	nmercial		0	0	0	0	1	0	0	0	0	0	0	0	+	VEST	mercial		0	4	+	-	-	0	0	0	0	0
	Lon Lon	5	0	15	30	15	00	5	00	12	0	5	0	Ц	Ľ		Con		5 1	0 4	5 2	0 1	5 2	0 0	5 1	0	5 0	1	5 1	0	13		Com		8	5 9	0 5	5 4	0 3	5 1	0 2	5 2	0 2	2 2
PEDS	Time Pe	1530 - 154	1545 - 160	1600 - 16'	1615 - 163	1630 - 164	1645 - 170	1700 - 171	1715 - 173	1730 - 174	1745 - 180	1800 - 181	1815 - 183	Per End		Heavies		Time Per	1530 - 154	1545 - 160	1600 - 161	1615 - 163	1630 - 164	1645 - 170	1700 - 171	1715 - 173	1730 - 174	1745 - 180	1800 - 181	1815 - 183	Per End	Heavies		Peak Per	1530 - 163	1545 - 164	1600 - 170	1615 - 171	1630 - 173	1645 - 174	1700 - 180	1715 - 181	1730 - 183	PEAK HF
Its	Provine				al Rd													TOT	164	175	154	158	158	180	193	192	169	213	169	152	2077			TOT	651	645	650	689	723	734	767	743	703	767
Resu					mercia										[rcial	H	65	69	59	47	57	75	86	69	57	82	53	45	764	F	rcial	I.	240	232	238	265	287	287	294	261	237	294
hentic	σ	5		ulting	L Com	/ 2015										EAS	Comme	щ	14	9	9	3	8	7	7	7	9	5	5	3	77	EAS	Comme	2 2	29	23	24	25	29	27	25	23	19	25
& Aut	319684			/ Cons	SE HIL	Sth July										E	ers	-	4	7	7	10	9	9	7	9	8	5	3	4	73	HL	ers		28	30	29	29	25	27	26	22	20	26
. DA	Fax 8	30010	0000	Coad	ROUS	iday 28									0011	NON	Mast	ш	8	15	6	14	15	12	14	13	11	11	10	11	143	NOR	Mast	2	46	53	50	55	54	50	49	45	43	49
ble. O	196847	04187	10-10-0	nhol :	: 5700	: Tues										10	nercial	_	80	14	11	12	13	16	11	11	9	9	8	7	123	ST	ercial		45	50	52	52	51	44	34	31	27	34
R.C Relia	Ph 88	Mobile		nt	Jame	ate										M	Comn	ы	65	64	62	72	59	64	68	86	81	104	90	82	897	W	Comm	н	263	257	257	263	277	299	339	361	357	339
	I'T AL	4.0		Clien	V/oN doL	Day/D:	•									Lights		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End	Liahts		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR

R.O.A	Reliable,	Ph.88196
H		A A

.R. DATA Original & Authentic Results Ph.88196847, Fax 88196849. Mobile.0418239019 : John Coady Consulting : 5700 ROUSE HILL Commercial Rd : Tuesday 28th July 2015 Client Job No/Name Day/Date

EAST	COMMERCIAL	0	0	0	0	0				
SOUTH	Caddies Blve	0	0	0	0	0				
WEST	CUMMERCIAL	0	0	0	0	0				
PEDS	Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900				
1						-	-	-	-	-
	TOT	0	0	0	0	0	0	0	0	0
EAST	commercial TOT	0	0	0	0	0	0	0	0	0
SOUTH EAST	Caddies Blve Commercial TOT	0	Not required 0	0	0	0	0	0	0	0 0 0
WEST SOUTH EAST	Commercial Caddies Blve Commercial TOT	0	Not required 0	0	0	0	0	0	0	

TOT

0

00 00

0

c

0

PEAK HR

		and the second s	and the second se			_					
		TOT	191	200	216	272	268	294	323	262	2026
ST	בו כומו	H	73	55	85	102	95	91	106	74	681
EA		-	37	53	39	48	42	44	76	87	426
НТ	s Blve	ш	24	21	29	33	36	39	29	34	245
SOI	Caddie	Ē	12	10	11	15	18	23	14	9	109
EST	וכוכומו	R	2	з	7	13	9	13	22	17	83
WE		н	43	58	45	61	71	84	76	44	482
combined		Time Per	700 - 0715	715 - 0730	730 - 0745	745 - 0800	800 - 0815	815 - 0830	830 - 0845	845 - 0900	Per End
0		L	6	2	6	0	0	6	0	0	É
		TO	15	17	16	10	21	26	21	11	14
AST	חכו כומו		4	2	2	+	5	5	5	4	28
ш			4	4	ю	4	з	0	9	e	27
UTH	es Blve	ш	4	2	e	0	5	5	1	0	20
so	Caddi		4	7	0	2	1	7	e	1	25
EST	וכוכומו	2	0	0	1	1	2	3	3	1	11
N		н	ю	2	7	2	5	9	e	2	30
Heavies		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	172	183	200	262	247	268	302	251	1885
ST	ק בומו	н	69	53	83	101	90	86	101	70	653
EA		L	33	49	36	44	39	44	70	84	399
UTH	es Blve	2	20	19	26	33	31	34	28	34	225
SO	Caddie		80	e	11	13	17	16	11	5	84
EST	ווכו רומו	2	2	3	9	12	4	10	19	16	72
W		н	40	56	38	59	66	78	73	42	452
Lights		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End

		-	-	-	_	-	_
		TOT	879	956	1050	1157	1147
ST	ובורומו	FI	315	337	373	394	366
EA			177	182	173	210	249
JTH	s Blve	ш	107	119	137	137	138
SO	Caddie	-1	48	54	67	70	61
ST	וכוכומו	ш	25	29	39	54	58
WE		н	207	235	261	292	275
ined		k Per	- 0800	- 0815	- 0830	- 0845	0060 -
Comb		Peal	0200	0715	0230	0745	0800
		TOT	62	64	73	78	79
ST	er crar	н	6	10	13	16	19
EA		L	15	14	10	13	12
ЛН	s Blve	2	6	10	13	11	11
SOL	Caddie	Ē	13	10	10	13	12
ST	ierciai	ЖI	2	4	7	6	6
WE		T	14	16	20	16	16
vies		(Per	- 0800	- 0815	- 0830	- 0845	0060 -
Hea		Peal	0200	0715	0230	0745 -	0800.
		TOT	817	892	977	1079	1068
ST		ы	306	327	360	378	347
EA		Ĩ	162	168	163	197	237
UTH	ss Blve	ш	98	109	124	126	127
SO	Caddie	IL	35	44	57	57	49
EST	d	ш	23	25	32	45	49
WE		ы	193	21,9	241	276	259
ghts		k Per	- 0800	- 0815	- 0830	- 0845	0060 -
Ë,		Реа	0020	0715	0730	0745	0800

PEAK HR 276 45 57 126 197 378 1079 PEAK HR 16 9 13 11 13 16 78 PEAK HR 292 54 70 137 210 394 1157

	TOT	0	0	0	0	0	0	0	0	0		6					TOT	224	260	283	273	247	265	306	242	265	259	216	235	3175			TOT	1140	1063	1068	1091	1060	1078	1072	982	975	1140
EAST	mercian	0	0	0	0	0	0	0	0	0		0				AST	L L	102	61	62	47	63	62	77	42	53	58	34	43	674	AST	mercian	H	242	233	234	249	244	234	230	187	188	242
	in a	L						L	L			L				-com	-	10	26	56	56	4	53	70	42	42	33	38	36	617	Ľ	Com		262	209	206	220	206	207	187	155	149	262
DUTH	ies Blv	0	0	0	0	0	0	0	0	0		0				es Blve	æ	1 g	57	72	72	67	64	20	63	83	59	52	60	177	UTH	es Blve	щ	259	268	275	273	264	280	275	257	254	259
S	Cadd	L						L		L		L				Cadd	-	I ÷	10	19	00	17	20	12	14	16	16	13	9	168	so	Caddi	1	50	54	64	57	63	62	58	59	55	50
WEST	unner ciar	0	0	0	0	0	0	0	0	0		0				WEST	R	36	20	15	17	10	13	16	11	6	16	8	10	170	VEST	merciar	щ	17	62	55	56	50	49	52	44	43	1 77 1
	6	0	5	0	Q	0	5	0	2	0		_				-02	-	1 8	56	59	73	49	53	61	02 0	62	1	71	76	769	2	unn-	ы	250	237	234	236	233	246	270	280	286	250
PEDS	Peak Per	1530 - 163	1545 - 164	1600 - 170	1615 - 171	1630 - 173	1645 - 174	1700 - 180	1715 - 181	1730 - 183		PEAK HF				Combined	Time Per	1520 - 15AF	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End	Combined		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR
	TOT	•	0	0	0	0	0	0	0	0	0	0	0	0			TOT	4	00	18	13	80	10	7	4	3	9	4	2	102			TOT	55	47	49	38	29	24	20	17	18	55
ST	rer crar							Γ					Γ			ST eruar	F	l u	4	9	5	4	5	б	0	0	0	0	0	32	L	a cran	H	20	19	20	17	12	8	3	0	0	20
EA	-commo													Ĩ		Commun	-	I u	, ,	0	4	+	2	+	-	-	2	-	2	24	EAS	number of the	-	13	6	10	80	2	5	5	5	9	13
UTH	ies Blve		equired													UTH es Blve	R			. 9	0	-	2	<i>с</i> о	e	2	2	2	e	29	UTH	es Bive	щ	11	8	б	9	б	10	10	6	6	111
s	Cadd		Not r													Caddi	-	10	0	+	2	-	0	0	0	0	۲	0	0	2	SOI	Caddie	٦	3	4	4	3	1	0	1	+	+	2
EST	merciar															EST	R		0	0	-	0	0	0	0	0	0	0	0	-	ST	lerciai	ш	-	+	-	+	0	0	0	0	0	F
3	illino o															M	F	10	10	2	-	+	1	0	0	0	1	+	0	11	WE	uuuoo .	н	7	9	5	3	2	F	1	2	2	-
PEDS	Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End		Heavies	Time Per	1530 - 1546	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End	Heavies		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR
Its					al Rd												TOT	308	252	265	260	239	255	299	238	262	253	212	230	3073			TOT	1085	1016	1019	1053	1031	1054	1052	965	957	085
Resu					mercia											Lunar	-	67	57	56	42	59	57	74	42	53	58	34	43	642		CIGI	н	222	214	214	232	232	226	227	187	188	. 223
hentic	G			ulting	- Com	2015										EAS		08	55	53	52	40	51	69	41	41	31	37	34	593	EAS ¹	iauuuo.	L L	249	200	196	212	201	202	182	150	143	1643
& Auti	196849			Const	E HILI	h July										Blve	æ	54	56	66	72	66	62	67	60	81	57	20	57	748	Ŧ	Blve	2 2	248	260	266	267	255	270	265	248	245	248
ginal	Fax 88	9019		Coady	ROUS	lay 28t										SOUT		13	10	18	9	16	20	12	14	16	15	13	10	163	SOUT	addies	L I	47	50	60	54	62	62	57	58	54	47 2
le, Ori	96847.	041823		John (5700	Tuesc									ļ		œ	75	20	15	16	10	13	16	1	თ	16	80	10	169	F	Clar	2 2	76	61	54	55	50	49	52	44	43	1 9/
Reliab	h.8819	lobile.(ne .	••										WES	T D d	60	54	57	72	48	52	61	70	62	76	70	76	758	WES.	12 Land	I	243	31	29	33	31	45	69	278	84	43
A Start	E CONTRACTOR			Client	Job No/Nar	Day/Date									L	Lights	Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End	Lights	<u>P</u>	Peak Per	1530 - 1630 2	1545 - 1645 2	1600 - 1700 2	1615 - 1715 2	1630 - 1730 2	1645 - 1745 2	1700 - 1800 2	1715 - 1815 2	1730 - 1830 2	PEAK HR 2

Reliable, Original & Authentic Results Ph.88196847, Fax 88196849. R.O.A.R. DATA Mobile.0418239019 : John Coady Consulting : 5700 ROUSE HILL Commercial Rd : Tuesday 28th July 2015 Client Job No/Name Day/Date

Commercial 0700 - 0800 0715 - 0815 0730 - 0830 0745 - 0845 0800 - 0900 Peak Per TOT 00 000 0 00 0 EAST Pd 0 McCombe Av Not required NORTH 0 commerciar WEST 0 0700 - 0715 0715 - 0730 0730 - 0745 0745 - 0800 0800 - 0815 0815 - 0830 0830 - 0845 0845 - 0900 Per End Time Per PEDS

TOT

EAST 000 0 0 0

McCombe Av NORTH 0 0 0 00

WEST

000 0 00

0 0 0 0 0

b

0

0

0

PEAK HR

		TOT	192	196	219	252	249	303	372	267	2050
ST	d cian	I	90	86	104	117	116	121	175	143	952
EA	a	2	1	9	4	4	3	14	32	23	87
RTH	the Av	Ļ	9	8	15	18	10	28	32	12	132
ION	McCon	R	19	22	28	20	20	17	17	13	156
EST	ierciai	L	7	5	5	10	13	4	11	10	65
W		ы	99	69	63	83	87	119	105	66	658
Combined		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	13	11	16	9	17	17	15	11	106
ST	nd and	I	9	9	5	5	8	9	11	8	55
EA	amoo	ш	0	0	0	0	0	0	0	0	0
RTH	nbe Av	Ļ	0	0	0	0	0	0	0	0	0
NON	McCon	2	0	0	0	0	0	0	0	0	0
EST	reruar	L	0	0	0	0	0	0	0	0	0
W		н	7	ŝ	11	+	6	11	4	e	51
Heavies		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	179	185	203	246	232	286	357	256	1944
ST	ercial	н	84	80	66	112	108	115	164	135	897
EA	uuunon D	Я	-	9	4	4	8	14	32	23	87
RTH	the Av	٦	6	8	15	18	10	28	32	12	132
ION	McCon	ш	19	22	28	20	20	17	17	13	156
EST	indicital	T	2	5	5	10	13	4	11	10	65
WE	d d	H	59	64	52	82	78	108	101	63	607
Lights		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End

			1C	29	22	20	34	54
1	_		¥	8	99	7.	80	97
	AST	טק ק	H	397	307	337	354	412
	Ē		ш	15	14	¥	21	49
	RTH	nbe Av	-I	50	41	43	56	70
	0N	McCon	жI	89	70	68	57	54
	ST	d cruar	L	27	20	28	27	28
	WE	amoo	I	281	215	233	289	311
	ned		Per	0800	0815	0830	0845	0060
	Combi		Peak	- 0070	0715 -	0730 -	0745 -	0800 -
			TOT	46	33	39	40	49
	ST	di ciai	I	22	16	18	19	25
	EA:	uuunoo	R	0	0	0	0	0
	THH	be Av	Ē	0	0	0	0	0
	NOF	McCom	R	0	0	0	0	0
	ST	d d	F	0	0	0	0	0
	WE		T	24	17	21	21	24
	ries		Per	0800	0815	0830	0845	0060
	Heav		Peak	- 0070	0715 -	0730 -	0745 -	- 0080
			TOT	813	634	681	764	875
	ST	1	н	375	291	319	335	387
	EAS		21	15	14	11	21	49
	TH	be Av	-	50	41	43	56	20
	NOF	McCom	щ	89	70	68	57	54
	ST	di citai	L	27	20	28	27	28
	WE		н	257	198	212	268	287
	Lights		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900

PEAKHR 287 28 54 70 49 387 875 PEAKHR 24 0 0 0 0 0 25 49 PEAKHR 311 28 54 70 49 412 924

	TOT	0	0	0	0	0	0	0	0	0		0					TOT	294	259	268	258	282	273	298	271	281	273	224	C47	3226			TOT	1079	1067	1081	1111	1124	1123	1123	1049	1023	1124
ST	rerciar		0	0	0	0	0								ST	ercial	F	134	105	105	93	90	66	125	93	86	82	64	n/	1146	ST 1	ercial	FI	437	393	387	407	407	403	386	325	302	407
EA	uuun				0	0	0		0						EA	Comm	æ	16	16	15	10	18	13	12	18	10	20	9	2	167	EAS	Comme	2	57	59	56	53	61	53	60	54	49	61
RTH	nbe Av	0	0	0	0	0	0	0	0	0					RTH	the Av	-	12	7	6	5	13	13	12	9	11	10	11	2	118	TH	be Av	L	33	34	40	43	44	42	39	38	41	44
NO	McCor								0						NOF	McCon	2	18	19	14	17	24	14	21	11	15	13	13	200	188	NOR	McCom	щ	68	74	69	76	70	61	60	52	50	102
EST	nerciar	0	0	0	0	0	0	0	0	0		0			ST	nercial	-	20	25	22	28	30	24	39	31	27	23	23	77	314	ST	ercial	1	95	105	104	121	124	121	120	104	95	124
M	-com														W	Comn	н	94	87	103	105	107	110	89	112	132	125	107	771	1293	WE	Comm	ы	389	402	425	411	418	443	458	476	486	418
PEDS	Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830		PEAK HR			Combined		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	0001 - 0101	Fer End	Combined		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR
	TOT	0	0	0	0	0	0	0	0	0	0	0	•	-			TOT	16	11	16	12	9	2	10	4	2	4	2	4	95			TOT	55	45	39	33	25	21	20	15	15	25
ST	erciar												1		T	ercial	FI	11	6	6	10	4	4	9	3	0	2	- 0	7	28	F	rcial	н	36	29	27	24	17	13	11	9	5	17
EA	numon.														EAS	Comme	2	0	0	0	0	0	0	0	0	0	0	0		•	EAS	Comme	ЯI	0	0	0	0	0	0	0	0	0	0
RTH	the Av		quired										T		TH	be Av	1	0	0	0	0	0	0	0	0	0	0	0		0	TH	be Av	Ē	0	0	0	0	0	0	0	0	0	0
NOF	McCon		Not re-										ľ		NOR	McCom	щ	0	0	0	0	0	0	0	0	0	0	0		•	NOR	McCom	2	0	0	0	0	0	0	0	0	0	0
ST	rerciar														ST	ercial	_	0	0	0	0	0	0	0	0	0	0	0		0	ST	ercial	Ē	0	0	0	0	0	0	0	0	0	0
W	uuuon		4												WE	Comm	F	5	5	7	2	2	+	4	-	2	2	4 0	7	37	WE	Comm	Γ	19	16	12	6	80	8	6	6	10	00
PEDS	Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per Ena	Heavies		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	0001 - 0101	rer End	Heavies		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR
ts					II Rd												TOT	278	248	252	246	276	268	288	267	279	269	219	1.42	131			TOT	024	022	042	078	660	102	103	034	800	660
Resul					mercia										F	rcial	FI	123	66	96	83	86	95	119	06	86	80	63	00	088	L	cial	-I	401 1	364 1	360 1	383 1	390 1	390 1	375 1	319 1	297 1	390 1 1
hentic	9.			ulting	L Com	2015									EAS	Comme	2	16	16	15	10	18	13	12	18	10	20	9	2	167 1	EAS	Comme	щ	57	59	56	53	61	53	60	54	49	61 13
TA & Aut	3196849			/ Cons	SE HIL	th July									TH	be Av		12	7	6	5	13	13	12	9	11	10	÷	2	118	H	De AV (Ē	33	34	40	43	44	42	39	38	41	44
DA.	Fax 88	39019		Coady	ROUS	day 28									NOR	McCom	2	18	19	14	17	24	14	21	11	15	13	13	200	188	NOR.	AcComt	R	68	74	69	76	70	61	60	52	50	102
A.R.	96847,	.04182;		: John	: 5700	: Tues									ST	ercial	_	20	25	22	28	30	24	39	31	27	23	23	77	314	ST	ercial 1	Ē	95	105	104	121	124	121	120	104	95	124
R.O Relial	Ph.88	Mobile			ame	te									WE	Comm	H	89	82	96	103	105	109	85	111	130	123	103	120	1256	WE	Comme	н	370	386	413	402	410	435	449	467	476	410
H RAN O		4-9		Client	Job No/N	Day/Da									Lights		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815		rer Ena	Lights		Peak Per	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	1630 - 1730	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR

O.A.R. DATA	liable, Original & Auth	88196847, Fax 88196849.	bile.0418239019
R	Re A Re	Ph.	Mo

entic Results

: John Coady Consulting : 5700 ROUSE HILL Commercial Rd : Tuesday 28th July 2015 Client Job No/Name Day/Date

_										
WEST	Carnoustie St	0	0	0	0	0				
PEDS	Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900				
	TOT	0	0	0	0	0	0	0	0	0
EAST	Carnoustie St									0
NORTH	Green Hills Dr		Not required							0
WEST	Carnoustie St									0
PEDS	Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End

T01 0 0 0 0 0

Carnoustie St EAST

Green Hills Dr NORTH

0 0 0 0 0

0 0 0 0 0

C

C

0

PEAK HR

		10	6	22	5	0	9	4	1	1	2
	11	ř			4	A	A	9	-		4
ST	Istie S	H	**	3	3	0	2	3	3	-	16
EA	Carnou	2	12	8	12	14	13	20	37	31	147
TH	ills Dr		14	16	17	22	16	30	26	21	162
NOR	Green H	αl	0	2	2	-	2	0	З	1	11
ST	stie St	L	+	2	7	+	4	4	-	2	22
WE	Carnou	ы	11	4	4	2	6	7	7	-	45
Combined		Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	0	0	0	0	0	0	0	0	0
ST	istie St	ы	0	0	0	0	0	0	0	0	0
EA	Carnot	щ	0	0	0	0	0	0	0	0	0
RTH	Hills Dr	J	0	0	0	0	0	0	0	0	0
ION	Green	21	0	0	0	0	0	0	0	0	0
ST	istie St	L	0	0	0	0	0	0	0	0	0
WE	Carnou	H	0	0	0	0	0	0	0	0	0
Heavies	8	Time Per	0700 - 0715	0715 - 0730	0730 - 0745	0745 - 0800	0800 - 0815	0815 - 0830	0830 - 0845	0845 - 0900	Per End
		TOT	39	35	45	40	46	64	11	57	403
ST	stie St	н	-	0	e	0	2	0	e	+	16
EA	Carnou	щ	12	80	12	14	13	20	37	31	147
RTH	Hills Dr		14	16	17	22	16	30	26	21	162
NON	Green	œ1	0	2	2	-	2	0	6	1	11
EST	ustie St	٦	-	2	7	-	4	4	-	2	22
M	Carnot	н	11	4	4	2	6	2	7	F	45
Lights		Time Per	700 - 0715	715 - 0730	730 - 0745	745 - 0800	800 - 0815	815 - 0830	830 - 0845	845 - 0900	Per End

		TOT	159	120	131	150	187
F	tie St	н	7	9	2	2	80
EAS	Carnous	α.I	46	34	39	47	20
Ŧ	ills Dr	1	69	55	55	68	72
NOR	Green H	2	5	5	5	e	5
ST	stie St	1	11	10	12	6	6
WE	Carnou	н	21	10	15	18	23
Combined		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900
		TOT	0	0	0	0	0
ST	stie St	Η	0	0	0	0	0
EAS	Carnous	NI NI	0	0	0	0	0
RTH	fills Dr	F	0	0	0	0	0
NOF	Green I	2	0	0	0	0	0
EST	ustie St	٦	0	0	0	0	0
WE	Carnot	ы	0	0	0	0	0
Heavies		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900
		TOT	159	120	131	150	187
ST	stie St	н	7	9	5	5	8
EA	Carnou	Ш	46	34	39	47	70
RTH	Hills Dr	Ŀ	69	55	55	68	72
NO	Green	ш	2	ъ	ŝ	0	2
EST	ustie St	-1	11	10	12	თ	თ
3	Carno	H	21	10	15	18	23
Lights		Peak Per	0700 - 0800	0715 - 0815	0730 - 0830	0745 - 0845	0800 - 0900

JOHN COADY CONSULTING PTY LTD 5 72 70 8 187

0

0

PEAKHR 23 | 9 | 5 | 72 | 70 | 8 | 187 | PEAKHR | 0 | 0 |

	TOT	•	0	0	0	0	0	0			-	6	>				TOT	100	71	61	48	64	51	71	60	67	65	40	748]		-	0	790	244	224	234	246	249	263	242	222	280
AST	ansno	0	0	0	0	0	0	0	0						CT	Diretio	T	12	4	4	e	9	5	4	6	8	9	0 4	71		10	ustie	-1 5	57 1	1	2 9	18	24	26	27	29	24	23
ū	Cann	L							ļ						ì	Carn	R	12	27	30	27	27	21	34	25	19	26	20	295		EA .	Carno	21	COL	111	105	109	107	66	104	88	83	105
ORTH	SILLE LIN	0	0	0	0	0	0	0	C			-			ртн	an Hille		49	21	19	17	26	18	24	4	24	15	13	257		HIN	I HIIIS	100		03	20	85	82	80	17	20	69	106
z	avo	Ļ		_		_			ļ	+		ŀ			N	Gree	2	15	6	e	0	0	2	e	ю	80	~ 0	N C	49		2 (Gree	×1 8	3 ;	2 4	n 1	2	∞	16	22	21	18	23
WEST	uranu	,0	0	0	0	0	0	0	0		-	-	,		WEST	rnoustie		4	5	e	0	2	2	4	2J	5	9	4 F	39	LOT	VE31	noustre	-11 ÷	1 4	2 +		20	13	16	20	18	14	12
L	er Ca	30	45	00	15	30	45	00	15	2.02	2				Ľ	3		10	5	15 2	30 1	15 3	0 3	5 2	4	5	4 1		37	ľ		ra Ca	-1 2			2 U	n !	0 12	5 12	0 13	5 16	14	11
PEDS	Peak Pe	1530 - 16	1545 - 16	1600 - 17	1615 - 17	1630 - 17	1645 - 17	1700 - 18	1715 - 18	1730 - 18	01 - 00 1	PEAK H			Combined		Time Pe	1530 - 154	1545 - 16(1600 - 16'	1615 - 163	1630 - 164	1645 - 170	1700 - 171	1715 - 173	1730 - 174	1745 - 180	1815 - 183	Per End		CONDINED	Deel: Deel	Leak Leak	1030 - 103	401 - C4CI	1011 - 110	1/1 - 6191	1630 - 173	1645 - 174	1700 - 180	1715 - 181	1730 - 183	PEAK HF
	TOT	•	0	0	0	0	0		-	-			0	•			TOT	•	0	0	0	0	0	0	0	0	0		•			TAT					-	•	•	•		•	6
ST	ansne									T	T		Ī	Π	ST	ustio	T	0	0	0	0	0	0	0	0	0	0	0	0	I.		ansr	-1 -					0	0	0	0	0	0
EA	Calm	1												Ĩ	FA	Carno	R	0	0	0	0	0	0	0	0	0	0	0	0	EAC	Como.	Carnot							0	0	0	•	0
RTH	SILLING		aquired												RTH	Hills	-	0	0	0	0	0	0	0	0	0	0	0	0	LTU TU	- Hill	SIIL -	11 0					0	•	0	0	0	•
NO	aaro		Not r					L							ON	Greet	æ	0	0	0	0	0	0	0	0	0	0	0	0	NON	Den of	liaalo					-	0	0	0	0	0	0
/EST	ansnor													0	FST	oustie	7	0	0	0	0	0	0	0	0	0	0	0	0	ECT.	-01	ansno	1				5	•	0	0	0	0	0
8	nan													Ц	3	Carn	н	0	0	0	0	0	0	0	0	0	0	0	0	AVE		Tarrie	-1 0					0	0	0	0	0	0
PEDS	Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1800 - 1815	1815 - 1830	Per End	Heavies		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1815 - 1830	Per End	Homine	CIACA ICO	Dool Dor	4620 4620	1545 1645	1800 1700	1001 - 1745	GL/L - CLOI	1630 - 1/30	1645 - 1745	1700 - 1800	1715 - 1815	1730 - 1830	PEAK HR
ilts				10000	al Rd												TOT	100	71	61	48	64	51	11	09	67	65	40	748			TOT	280	DAA	224	477	407	246	249	263	242	222	280
: Resu					merci										Ŀ	istie	H	12	4	4	в	9	5	4	6		9 9	0 4	71	I.	ceto	ane	- 23	17	18	0 0	- 2	24	26	27	29	24	23
thentic	.6			sulting	L Con	y 2015									EAS	Carnot	R	21	27	30	27	27	21	34	25	19	26	20	295	EAS	ionac o	D	105	111	105	300	201	101	66	104	88	83	105
ATA 8 Au	819684			y Cons	SE HIL	8th Jul									TH I	Hills	_	49	21	19	17	26	18	24	14	24	15	13	257	HL	Hille		100	20	S S		8 8	8	8	1	02	69	106
. D/	, Fax 8	33019		Coad	ROU	sday 2									NOF	Green	щ	11	9	3	0	0	2	в	6	80	80 C	10	49	aon	Groon		:1 %	10	4 4	, u	0 0	o (16	22	21	18	23
ble, o	196847	B.04182		: Johr	: 5700	: Tues									ST	oustie	_	4	5	е	0	2	2	4	2	2	9 0	- 1	39	ST	rictio	anen	1 5	10	2	- a	• •	2 9	16	20	18	14	12
R.O Relia	Ph.88	Mobile		t	lame	ate									M	Carno	H	9	5	2		e	e	2	4	m -	4 u	5	37	WF	Carno	T	1 1	. +	σ		n (*	7	12	13	16	14	F
		4.9		Clien	V/oN doL	Day/Di									Liahts		Time Per	1530 - 1545	1545 - 1600	1600 - 1615	1615 - 1630	1630 - 1645	1645 - 1700	1700 - 1715	1715 - 1730	1730 - 1745	1745 - 1800	1815 - 1830	Per End	Lichts		Poak Por	1530 - 1630	1545 - 1645	1600 - 1700	1615 - 1715	0021 0031	1020 - 1/30	1645 - 1/45	1700 - 1800	1715 - 1815	1/30 - 1830	PEAK HR

Appendix B Traffic Flow Diagrams Adopted for the purposes of the SIDRA Analysis

Existing AM (Reassigned)

JOHN COADY CONSULTING PTY LTD

